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Abstract  Information 

Evaluating flexible pavement performance is mandatory for managing transport infrastructure. 
This study focuses on modeling the relationships between international roughness index (IRI) and 
a total of 10 types of pavement distress, including alligator, block, wheel path length, wheel path 
longitudinal, non-wheel path longitudinal, transverse crackings, patches, bleeding, raveling areas, 
and pumping. The data recorded under the Long-Term Pavement Performance was used to 
develop the models. Data sets covering General Pavement Studies from seven states of the United 
States were used in modeling. The study used modeling approaches, including nonlinear 
regression analysis, multivariate adaptive regression splines, and artificial neural networks (ANN), 
in which IRI was the dependent variable and pavement distress was the independent variable. In 
the developed models, 0.516, 0.623, and 0.684 regression coefficients values were obtained for 
nonlinear regression analysis, multivariate adaptive regression splines, and artificial neural 
networks approaches, respectively. The analysis results have determined that the artificial neural 
networks technique performs more successfully than the other techniques. The statistical error 
analyses of the root mean square error, Nash-Sutcliffe coefficient of efficiency, mean absolute 
error, and normalized root mean square error also showed that the same modeling approach 
performs more successfully. With these data generated from a universally used database, it has 
been determined once again that ANN is the most efficient mathematical approach in modeling 
the relationships between surface distresses and IRI. 
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1. Introduction 

Roads are one of the essential parts of a provincial's 
infrastructure for economic and social growth. Roads are 
necessary because they link different parts of the country 
together and make it easier for people and goods to move 
around. Every year, governments spend billions of dollars 
developing new roads and repairing and maintaining 
existing ones. Roads become more valuable as a country 
grows, especially if there are no other ways to get around, 
like railways or canals. The increase in annual expenses 
shows that coordinated efforts are needed to get the 
most out of these investments [1, 2].  
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The effectiveness and efficiency of several civil 
engineering structures mainly depend on their 
administration. This ensures that such constructions have 
a long lifespan, serve their intended purpose, and incur 
the lowest possible cost. A Pavement Management 
System (PMS) is a collection of planned and directed 
activities or procedures that maximize the Return on 
Investment (ROI) relative to the available budget [3]. 

The PMS is a structure for managing and maintaining 
roads based on statistical and mathematical methods. In 
the 1970s, when there were many more roads to keep 
track of, the idea of “pavement management” began. 
PMS was first described at the workshop organized in 
1980 as a system that finds the best solutions at different 
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levels of management and keeps pavements in a good 
state for use. For many years, many authorities, especially 
The American Association of State Highway and 
Transportation (AASHTO) and the Federal Highway 
Administration (FHWA), have been trying to establish and 
develop PMS in road networks of different scales [4, 5]. 

The pavement performance is an essential component of 
any PMS. The measurement, evaluation and prediction of 
performance are crucial in managing pavements. The 
term “deterioration” describes the reduction in the 
performance level of pavements over time. Road 
pavements will inevitably deteriorate over time due to 
axle loads transferred from vehicles, environmental 
effects, materials used and manufacturing quality. These 
various parameters contribute to the complexity of the 
operation. Using performance models, the status of the 
road at any given time can be approximately predicted [6, 
7]. 

The predicted performance plays a significant role at both 
the management levels (network and project). The entire 
facility can be planned using performance models to 
justify the budget and resources. The planning and timing 
of maintenance work for specific projects depend on 
when a section falls out of service. This may be predicted 
with precision using performance models. In addition to 
the performance and interplay between the 
infrastructure facility and its user, formulating an 
acceptable transportation policy and evaluating its 
economic benefits depend on the performance and 
interaction [7]. 

The pavement's roughness can be considered a simple 
way to measure road users' satisfaction level and a 
significant indicator in determining the level of 
performance. It measures the road surface, ride quality, 
and comfort of drivers and passengers. Increases in 
pavement roughness are associated with higher fuel 
consumption, higher costs for car maintenance and 
repairs, higher emissions of greenhouse gases, and 
reduced vehicle efficiency. It might cause traffic safety 
problems that cost millions of dollars annually to repair. 
The International Roughness Index (IRI) is a universally 
accepted parameter to quantify pavement roughness, 
measured with automated, multifunctional measuring 
devices or tools [8, 9]. 

Similar studies recorded in the literature can be 
summarized as follows. Al-Omari and Darter [10] 
investigated the correlations amongst them IRI, present 
serviceability rating (PSR), and several pavement distress 
types, including rutting, deformations, potholes, and 
cracks. The Long Term Pavement Performance (LTPP) 
database data were used in their study. Mactutis et al. 
[11] studied the relationship between distress and 
roughness using WesTrack Project data. In this study, a 
correlation was found between the IRI and the initial IRI 
of the pavement, the extent of fatigue cracking and the 

average rut depth. Reportedly, the initial IRI has a 
significant impact on roughness. Fatigue cracks are very 
sensitive to roughness, but ruts are not so sharp. Dewan 
and Smith [12] investigated how pavement distress can 
be used to calculate vehicle operating costs (VOC) 
directly. They collected data from the California LTPP sites 
to establish a relationship between IRI and pavement 
distress. The correlation was determined on the basis of 
39 observations at 15.2 m intervals along a 152.4 m test 
section. However, Lin et al. [13] studied the capability to 
estimate IRI from pavement distress collected from 
pavement videos and photos of a camera sited on an 
Automated Road Analyzer (ARAN) vehicle. 125 road 
sections, each section 1-kilometer-long of Taiwan's 
provincial highways and country roads, were surveyed for 
data collection. This investigation discovered and 
examined relationships between 10 different distress 
types. In addition, some analyzes were made in the study 
on using IRI to measure the correlation between 
pavement distress severities and types. Aultman-Hall et 
al. [14] analyzed the correlations between IRI, cracking, 
and rutting. This research aimed to determine whether 
these correlations were able for IRI, the more easily 
measurable variable, to be substituted for the others. The 
findings showed that although there are statistically 
significant correlations between cracking, rutting and IRI, 
these correlations are insufficient for IRI to substitute 
pavement conditions. 

Besides, Hozayen and Alrukaibi [15] presented a 
methodology for establishing acceptance criteria 
determining the performance levels to manage 
pavements. In their studies, they conducted performance 
tests on rural roads to learn more about surface 
roughness and pavement distresses. The overall length of 
this road is 572 kilometres; it has been divided into three 
segments 390 kilometres, 139 kilometres, and 43 
kilometres. The results showed a regression relationship 
between raveling and roughness for the three roadway 
segments, with the coefficient of determination (R2) 
varying from 0.946 to 0.962. Prasad et al. [16] created a 
model correlating PMGSY road pavement distress with 
roughness in India. Data concerning pavement distress 
were obtained at regular intervals of 50 meters. Bump 
Integrator, calibrated using MERLIN, was used to collect 
roughness data. Based on the data obtained in the field, a 
regression equation was created with the IRI and the 
visual distresses. The maximum value of the 
determination coefficient (R2) was 0.66. Also, Meegoda 
and Gao [17] studied the GPS test section roughness data 
given in the LTPP database over time to create a model 
that estimates how pavement roughness would change as 
the pavement ages. They created and normalized a 
computable correlation between IRI progression, traffic 
loads transferred to the pavement, structure number, 
and climatic area. They created a scale of one to five 
performance levels to quantify the degree of 
deterioration of asphalt pavements. 
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Kirbas et al. [18] investigated the correlation between 
pavement distress and roughness in flexible pavements. 
It has been shown that a specific amount of surface 
distress affects the IRI. A mathematical modeling analysis 
of the correlations between IRI and 32 distresses with 13 
surface distress types, and severities was implemented in 
their models. The modeling techniques included linear 
regression, multivariate adaptive regression splines 
(MARS), and artificial neural networks (ANN). It has been 
confirmed that the ANN technique is the most accurate. 
Also, Kirbas et al. [19], in another study, created a 
pavement performance estimation model that estimates 
the performance of hot mix asphalt (HMA)-coated 
provincial roads and state highways under the authority 
of the General Directorate of Highways (KGM) over the 
next several years. An empirical equation expressing the 
relationship between PCI and IRI is also proposed in the 
study. 

Reviewing the literature, Chandra et al. [20], Sandra and 
Sarkar [21], Mubaraki [22], H Joni et al. [23], Yu Qiao et al. 
[24] and many more researchers seem to have developed 
mathematical models that determine the relationships 
between IRI and surface distress. It is understood that 
many modeling approaches, such as linear and nonlinear 
regression models, ANN, fuzzy logic, and MARS, are used 
to develop models in research. Notably, studies have 
frequently investigated the relationship between IRI and 
seven types of deterioration, including potholes, raveling, 
rutting, cracking, patching, corrugation, and depression. 
In the models generated, performances up to 0.986 were 
obtained as the determination coefficient (R2). 

The LTPP database collects climate, traffic and 
performance data on over 2500 road sections. Data 
entries into this database are made randomly due to the 
field operators' work plans. While some data can be 
entered annually, others are entered in the study plans 
every 2 or 3 years. In addition, overlapping data stacks 
seasonally is quite troublesome. In this study, special 
efforts were made to ensure that the data collection 
dates for each surface disturbance and IRI data evaluated 
were close to each other. The data stack was prepared 
carefully, considering the date and significance of each 
data used in modelling and the climate situation at the 
time of measurement. In this way, a data set suitable for 
modelling was obtained. In the literature, it is clearly seen 
that the similarity values are low in studies that utilize the 
LTPP database, but the dataset is not created with similar 
precision. In addition, as seen in other studies of the 
authors of this study, the ANN method has once again 
been proven to be the most suitable technique for 
investigating the relationships between surface 
distortions and IRI. 

There are many studies in the literature that investigate 
the effects of distress that negatively affect driving 
comfort on IRI and model the relationships. Also, it is seen 
that there are limited studies that evaluate the types of 

distress by considering the severity levels such as low, 
medium and high. Kumar et al. [6], Prasad et al. [16], 
Meegoda and Gao [17], and similar studies do not 
consider the severity levels of pavement distress types. 
On the other hand, it is understood that one or two types 
of modeling techniques are frequently evaluated in the 
investigation of relationships. It is noteworthy that in 
Shrestha and Khadka [9], Al-Omari and Darter [10], Qiao 
et al. [24] and similar studies, only one or two techniques 
were used to investigate the similarities between 
pavement deterioration and IRI. In terms of the modeling 
techniques evaluated, there are hardly any studies using 
three or more methods. With many studies conducted 
today, it has become clear which parameters affect the 
estimation of the service level provided by pavements to 
road users. It is now understood that the research topic 
focused on is the correct selection of the modeling 
approach to be used in developing relationships. For this 
reason, using many techniques in researching 
relationships and bringing their comparative results to 
the literature will undoubtedly provide convenience to 
researchers in solving the problems. Within the scope of 
this study, the relationships between IRI and a total of 22 
independent variables at different severity levels were 
investigated in 10 various distresses, alligator cracking, 
block cracking, wheel path longitudinal cracking, non-
wheel path longitudinal cracking, transverse cracking, 
patches area, bleeding area, raveling area, pumping and 
bleeding, and wheel path length crack, and 6 of them 
were low, medium and high severity levels, using LTPP 
data. Three techniques, Nonlinear Regression Analysis, 
MARS and ANN, were used to investigate the 
relationships. The working principle established in the 
study can be seen in the flowchart in Figure 1. 

 
Figure 1. Flowchart of the study 
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2. Introduction 

2.1. Long term pavement performance (LTPP) 

The LTPP programme, which has collected data from 
more than 2581 road segments in the United States and 
Canada over the past 33 years, is the largest pavement 
performance research programme. The goal of the LTPP 
programme is to monitor the performance of pavements 
in these sections over the long term. The data collected 
includes information about construction, pavement 
structure, material quality, maintenance and 
rehabilitation activities, pavement conditions, pavement 
loading, and environmental conditions. The LTPP 
database was developed to record the pavement's 
characteristics, condition, maintenance activities and 
reconstruction projects over some time. Each road in the 
database has a section number indicating where it is 
located, what material it is made of and how thick the 
structure is. 

Utilizing the LTPP database by the Federal Highway 
Administration (FHWA) is the principal means for 
amassing and scrutinizing pavement-related information 
within the United States and Canada. The LTPP program 
exhibits a broad reach, enabling the assessment of a 
pavement's extended-term effectiveness in diverse 
loading and environmental circumstances. Its objective 
involves identifying how loading, environment, material 
characteristics, fluctuations, construction quality, and 
maintenance levels influence the deterioration and 
functionality of pavements. Furthermore, it endeavours 
to enhance design methodologies and strategies and 
formulate equations that facilitate the rehabilitation of 
existing and newly constructed pavements [25, 26]. 

The LTPP database is designed so that users can easily 
access data from many modules, e.g. inventory, 
maintenance, monitoring, remediation, materials testing, 
transport and climate. Within the LTPP program, two 
distinct categories of experiments are incorporated: 
general pavement studies (GPS) and specific pavement 
studies (SPS). These experiments encompass different 
research approaches and objectives to investigate and 
analyze various aspects of pavements comprehensively. 
The general pavement studies (GPS) entail a broader 
scope, aiming to understand and evaluate pavements' 
overall performance and behavior under diverse 
conditions. In contrast, specific pavement studies (SPS) 
concentrate on more focused research inquiries, 
targeting particular aspects or phenomena within 
pavement systems; by combining GPS and SPS, the LTPP 
program endeavours to provide a comprehensive 
understanding of pavements, encompassing their overall 
performance and specific factors and phenomena that 
influence their functionality and deterioration. 

Access to the LTPP data is available through both online 
and offline means. Starting from March 2003, the online 

LTPP data have been accessible via the 
http://www.infopave.com website. This study uses data 
from the LTTP InfoPave website [26]. 

2.2. Data collection 

The LTPP database is this study's main data source, 
containing data up to 2023. The LTPP database's accuracy 
is acceptable and has been used in several studies. The 
LTPP data set consists of a classified collection of 
information from different types of pavement. The data 
collection includes comprehensive details on the types of 
pavement, the environment, traffic, maintenance, and 
rehabilitation. Therefore, LTPP sites located in Arizona, 
Florida, Minnesota, Mississippi, North Carolina, 
Oklahoma, and Tennessee from seven states of the 
United States have been selected to obtain the necessary 
data according to specific criteria [26]. 

The LTPP InfoPave website's 'Data' tab was used to obtain 
the data. A filtering tool allows the selection of only the 
relevant data. Data was selected, then extracted into a 
Microsoft Excel file that could be downloaded. In this 
study, the extracted Excel file for both the IRI and distress 
tables had the same fields, such as State_Code, SHRP_ID, 
Survey_Date, and Construction_Number. In this study, 
the distress data used were obtained from the LTPP table 
MON_DIS_AC_REV, and IRI data from the LTPP table 
MON_HSS_PROFILE_SECTION, respectively, and 
downloaded from the LTPP InfoPave website. 

This research selected asphalt concrete pavement on a 
granular base (GPS-1) and asphalt concrete pavement on 
a bound base (GPS-2) test sections because these are 
commonly constructed pavement types. 102 LTPP test 
sections were selected from GPS–1 and GPS–2, as shown 
in Table 1. We consider only asphalt concrete (AC) 
pavements that did not undergo maintenance or 
rehabilitation at the measurement time. The data 
collection step was then started. The performance of 
pavements captured in the LTPP database can be 
influenced by numerous factors, which can be categorized 
into four primary domains: structure, climate, traffic, and 
performance. However, this study selected some factors 
considered the most important to pavement 
performance problems, especially the IRI and pavement 
distress. 

Table 1. Presents the final number of test sections in each LTPP 
state for GPS-1 and GPS-2 pavements 

State Code State Name Section Total 

4 Arizona 17 

12 Florida 20 

27 Minnesota 13 

28 Mississippi 13 

37 North Carolina 16 

40 Oklahoma 10 

47 Tennessee 13 

Total Sections 102 
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The primary aim of this study is to construct empirical 
models capable of predicting the behavior of flexible 
pavements in granular base sections. A multitude of 
internal and external factors can influence the 
formulation of the pavement performance model. When 
constructing or evaluating pavements, it is crucial to take 
these factors into account to anticipate the long-term 
functional and structural conditions of the pavement. 

The selection of independent variables is determined by 
considering the structure and accessibility of the LTPP 
data, its limitations, previous research utilizing the LTPP 
data, as well as engineering knowledge and expertise. 
Therefore, the independent variables used for this study 
are Alligator Cracking (Low), Alligator Cracking (Medium), 
Alligator Cracking (High), Block Cracking (Low), Block 
Cracking (Medium), Block Cracking (High), Wheel Path 
Longitudinal Crack (Low), Wheel Path Longitudinal Crack 
(Medium), Wheel Path Longitudinal Crack (High), Non-
Wheel Path Longitudinal Crack (Low), Non-Wheel Path 
Longitudinal Crack (Medium), Non-Wheel Path 
Longitudinal Crack (High), Transverse Crack (Low), 
Transverse Crack (Medium), Transverse Crack (High), 
Patches (Low), Patches (Medium), Patches (High), 
Bleeding Area, Raveling Area, Pumping and Bleeding 
Length, Wheel Path Length Cracked. The designated 
dependent variable is the International Roughness Index 
(IRI). 

3. Research Analysis Results 

Pavement performance modeling is an essential part of 
the pavement management system (PMS), which aims to 
accurately estimate the requirement for pavement 
maintenance, rehabilitation, or reconstruction. These 
models estimate how the pavement will be in the future 
so that maintenance treatments can be made better, and 
we can see how maintenance operations might affect the 
future condition of the pavement. Improving the 
prediction accuracy of estimating methods would result 
in a more efficient allocation of financial resources, 
substantial cost savings, and the systematic selection of 
various maintenance treatments. Researchers have made 
several models that can predict how well flexible 
pavements will work using data from extensive 
experiments in different parts of the world. 

The main goal of this study is to use LTPP data from seven 
states of the United state (Arizona, Florida, Minnesota, 
Mississippi, North Carolina, Oklahoma, and Tennessee) to 
build empirical pavement performance models. The 
relationship between the dependent variable IRI and the 
independent variable, pavement distress, was studied 
using regression analysis. In order to identify the best 
model, regression analysis used three techniques: 
Nonlinear Regression Analysis, MARS, and ANN. 

3.1. Nonlinear regression analysis 

Regression analysis is commonly used to estimate the 
dependent variable given the values of the independent 
variables. The regression function, which is a function of 
the independent variables, is the estimation target. 
Mainly, regression analysis explains how the mean value 
of the dependent variable changes due to changes in the 
independent variables. Essential goals of regression 
analysis include fitting the model to the data and 
determining the model's adequacy. The quality of the fit 
is evaluated, resulting in either modification of the model 
or adoption of the model. Regression analysis is a set of 
statistical approaches for determining how a dependent 
variable relates to one or more independent variables. 
There are three most common types of regression 
analysis, linear, multiple linear, and nonlinear regression. 
Most models are either linear or nonlinear. Nonlinear 
regression analysis is frequently applied to more complex 
data sets where the relationship between the dependent 
and independent variables is nonlinear. Linear regression 
models have parameters that look like they move in a 
straight line, while nonlinear regression models have at 
least one parameter that moves in a way that does not 
look like a straight line. In general, engineering models are 
nonlinear models. This is because the response of some 
variables is nonlinearly dependent on the implementation 
of some independent factors. Nonlinear regression 
analysis was used to develop the relationship between 
the international roughness index as a dependent 
variable and pavement distress as an independent 
variable, which is the main goal of this research. The 
Statistical Product and Service Solutions (SPSS) program 
develops the nonlinear regression model [3, 27]. 

This study used data from the General Pavement Studies 
(GPS-1 and GPS-2) to choose 102 test sections to be 
analyzed. With the help of nonlinear regression analysis 
modeling, the mathematical relationship between the IRI 
and 10 types of pavement distress was studied. There are 
six types of pavement distress, including Alligator 
Cracking, Block Cracking, Wheel Path Longitudinal Crack, 
Non-Wheel Path Longitudinal Crack, Transverse Crack, 
and Patches area with three severity levels: low, medium, 
and high, and four types of pavement distress have a 
single severity level, including Bleeding Area, Raveling 
Area, Pumping and Bleeding Length, Wheel Path Length 
Cracked. The nonlinear regression analysis was developed 
at a 0.05 significant level to create the model. The results 
of the nonlinear regression analysis are shown in Tables 2 
and 3. 

Table 2. ANOVA results 

ANOVA 

Source Sum of Squares df Mean Squares 
Regression 1145.772 23 49.816 

Residual 142.054 614 0.231 
Corrected Total 293.451 636  
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Table 3. Model summary 

R R2 Adjusted R2 

0.718 0.516 0.497 

The above result was obtained using the SPSS software 
and nonlinear regression analysis. Table 3 and Figure 2 
summarizes the created model, including the correlation 
coefficient (R), determination coefficient (R2), and 
adjusted determination coefficient. The ANOVA table is 
shown in Table 2. 

The dependent variable in the model is the international 
roughness index, while the independent variable is 
pavement distress. It is mathematically formulated as 
Equation (1). 

IRI=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.972+Alligator Cracking (L)×6.115E-5
+Alligator Cracking (M)×0.001

+Alligator Cracking (H)×0.001
+Block Cracking (L)×0.001

+Block Cracking (M)× 0.002
+Block Cracking (H)× 0.001

+Wheel Path Longitudinal Crack (L)×0.003
+Wheel Path Longitudinal Crack (M)×0.004

-Wheel Path Longitudinal Crack (H)×0.029
-Non Wheel Path Longitudinal Crack (L)×0.001
-Non Wheel Path Longitudinal Crack (M)×0.001

+Non Wheel Path Longitudinal Crack (H)×0.001
+Transverse Crack (L)×0.002

+Transverse Crack (M)×0.004
+Transverse Crack (H)×0.025

+Patches Area (L)×0.014 

+Patches Area  ( M)×0.040
+Patches Area (H)×0.009 
+Bleeding Length×0.001 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

 
Figure 2. SPSS model prediction accuracy 

3.2. Multivariate adaptive regression splines (MARS) 

Multivariate Adaptive Regression Splines (MARS) is also 
known as the MARS method, which comes from the four 
letters of its name. Friedman was the first to propose this 
method [28]. MARS is a non-parametric technique that 
makes no assumptions about the basic functional 
relationship between dependent and independent 
variables. However, it develops a dynamic relationship 
between cause-effect variables. The MARS technique 
investigates the relationships between each independent 
variable and the dependent variable and the interactions 
between independent variables. It shows the effect of the 

interactions between all independent variables on the 
dependent variable. The results of the technique vary 
based on the number of degrees and modeling terms 
used [18, 28]. 

Consequently, it is essential to accurately select these 
parameters to perform the most effective model analysis. 
The MARS algorithm is established on the principle of 
linear partial function expansion with truncation. This 
situation is represented by Equation (2). 

[+(X - τ)]+,[-(X - τ)]+= [q]+, [q]+ (2) 

Where [q]+ stands for the expression "max (0, q)", and τ 
stands for a knot with a single variable. The MARS 
algorithm investigates the relationships between each 
variable and the locations of knots (nodes) in all feasible 
partial linear representations [29]. The technique closely 
follows curve-fitting techniques. The MARS technique has 
the general form shown in Equation (3). 

y=β0+ ∑ ∑ [
βbj

(+)Max(0,Xj - Hbj)+ 

βbj
(-)Max(0, Hbj- Xj)

]B
b = 1

P
j = 1  (3) 

Where P represents the independent variable, and B 
represents the basic function. These two univariate 
equations express the basic functions max (0, x− H) and 
max (0, H − x), and if the β coefficients are 0, just one 
equation is required. The H values are known as "knots." 
In contrast to regression analysis, this approach separates 
the data sets into regions by knots and can deactivate the 
independent variables under specific conditions and 
within specified limits. Therefore, it is possible to avoid 
the occurrence of meaningless result (estimation) values 
by using the independent variables with extreme values 
as the model inputs. This has been seen as an important 
advantage of the MARS approach [18, 30]. 

The MARS technique uses a stepwise regression process 
to eliminate basic functions that decrease the model's 
prediction performance while using a step-by-step 
progression procedure to investigate the model constants 
for these basic functions and identify the knots. The 
generalized cross-validation criterion (GCV) calculates the 
knot adjustment metric. The GCV criteria are calculated 
by multiplying the mean residual error by a penalty that is 
compensated for the variability brought on by the 
prediction of additional model parameters [31- 33]. GCV 
formula shown in Equation (4). 

GCV = 
1

n
 
∑  (yi-ŷi)

2n
i =1

(1 -P(M)/n)2 (4) 

This study used data from the General Pavement Studies 
(GPS-1 and GPS-2) to choose 102 test sections to be 
analyzed. With the help of the Multivariate Adaptive 
Regression Splines (MARS) modeling approach, the 
mathematical relationship between the international 
roughness index (IRI) and 10 types of pavement distress 

R² = 0.516
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was studied. There are six types of pavement distress, 
including Alligator Cracking (AC), Block Cracking(BC), 
Wheel Path Longitudinal Crack (WPLC), Non-Wheel Path 
Longitudinal Crack (NWPLC), Transverse Crack (TC), and 
Patches area (PA) with three severity levels: Low (L), 
Medium (M), and High (H), and four types of pavement 
distress have a single severity level, including Bleeding 
Area (BA), Raveling Area (RA), Pumping and Bleeding 
Length (PBL), Wheel Path Length Cracked (WPLC). A 
prediction model was developed between IRI and 
pavement distress. The mathematical model is shown in 
Equation (5). 

IRI=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.8704736 + 0.0190581 × BF1
– 0.0517728 × BF2 – 0.0019054 × BF3
– 0.0042911 × BF4 – 0.0285172 × BF5
– 0.0212036 × BF6 + 0.0020690 × BF7
+ 0.0073641 × BF8 – 0.0036871 × BF9

– 0.0262217 × BF10 + 0.0130658 × BF11
– 0.0137322 × BF12 + 0.0018260 × BF13
– 0.0031871 × BF14 + 0.0339321 × BF15
– 0.0136603 × BF16 – 0.0384471 × BF17
+ 0.0074482 × BF18 – 0.0216615 × BF19
+ 0.0061849 × BF20 + 0.0291398 × BF21
+ 0.0279002 × BF22 + 0.0247000 × BF23
+ 0.0010227 × BF24 – 0.0028995 × BF25
– 0.0025667 × BF26 + 0.0033225 × BF27
+ 0.0123699 × BF28 – 0.3345593 × BF29
+ 0.0962880 × BF30 – 0.0231241 × BF31

+ 0.0056054 × BF32 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5) 

The mathematical model has 32 basic functions, 22 
independent variables, and only one dependent variable. 
A GCV error of 0.215327 and a threshold of 0.0005 were 
used to conduct the model analysis. The model's variables 
are represented by basic functions (BF), which are shown 
in Table 4. 

The regression coefficient (R2) for this model, which 
measures how well it can predict, was found to be 
0.623109. This model's regression coefficient is 0.623109, 
which indicates that 62.3% of the IRI variation can be 
related to the variance of pavement distress. Table 5 
shows the statistical regression values of the developed 
model. The IRI values measured and estimated through 
the model are comparatively shown in Figure 3. 

3.3. Artificial neural networks (ANN) 

Artificial Neural Networks (ANNs), or simply neural 
networks, are one of the intelligent modeling approaches 
for processing information that may be used for analyzing 
the interactions among the variables. It is a generalized 
mathematical model that works like the human brain, 
which is composed of interconnected neurons of the 
organic nervous system [34]. In 1943, McCulloch and Pitts 
introduced the concept of artificial neural networks, but 
until 1986 when Rumelhart et al. developed the 
backpropagation algorithm, ANNs gained wide 
acceptance. ANNs are one of the most popular Artificial 
Intelligence (AI) approaches.  

Table 4. Basic functions used in the MARS model 

BF1 = max (0; TC – H – 7.0999999) 
BF2 = max (0; 7.0999999 - TC – H) 
BF3 = max (0; AC – M - 165.3000031) 
BF4 = max (0; 165.3000031 - AC – M) 
BF5 = max (0; WPLC – L - 29.8999996) 
BF6 = max (0; 29.8999996 - WPLC – L) 
BF7 = max (0; BC – M - 114.8000031) 
BF8 = max (0; 23.2999992 – NWPLC – L) 
BF9 = max (0; P&BL - 17.0000000) 
BF10 = max (0; 17.0000000 - P&BL) 
BF11= max (0; PA – L - 0.0000000) 
BF12 = max (0; NWPLC – H - 150.3999939) 
BF13 = max (0; BC – H - 0.0000000) 
BF14 = max (0; 155.1999970 – BC – L) 
BF15 = max (0; PA – M - 0.0000000) 
BF16 = max (0; TC – M - 8.8999996) 
BF17 = max (0; 8.8999996 – TC – M ) 
BF18 = max (0; PA – H - 0.0000000) 
BF19 = max (0; WPLC – H - 0.0000000) 
BF20 = max (0; 122.0000000 – AC – L) 
BF21 = max (0; TC – M - 31.2999992) 
BF22 = max (0; WPLC – L - 43.5999985) 
BF23 = max (0; 8.5000000 – WPLC – M) 
BF24 = max (0; 248.0000000 – NWPLC – M) 
BF25 = max (0; WPLC - 133.6000061) 
BF26 = max (0; 133.6000061 - WPLC) 
BF27 = max (0; TC – L - 55.2000008) 
BF28 = max (0; NWPLC – H  - 115.0999985) 
BF29 = max (0; WPLC - 302.7999878) 
BF30 = max (0; WPLC - 294.2000122) 
BF31 = max (0; TC – M - 63.9000015) 
BF32 = max (0; AC – L - 31.2999992) 

Table 5. IRI Prediction Model Regression Statistical Values 

Regression Statistics IRI 
Mean (observed) 1.249411 
Standard deviation (observed) 0.679265 
Mean (predicted) 1.249411 
Standard deviation (predicted) 0.536193 
Mean (residual) 0.000000 
Standard deviation (residual) 0.417011 
R-square 0.623109 

 
Figure 3. MARS model prediction accuracy 

AI can be described as the study or process of teaching 
machines to learn on their own. Artificial intelligence aims 
to construct machines that work like the human brain and 
can "think." ANN models are commonly used for 
prediction and analysis. Even if the sample size is 
relatively small, models based on artificial neural 
networks (ANNs) can be used in complicated systems with 
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multiple interrelated variables. It provides the necessary 
information by analyzing the stored data. Artificial neural 
networks (ANNs) copy the human brain using a computer 
and mathematical processing [20]. 

ANNs are mathematical systems made up of several 
neurons connected to one another and have weights 
assigned to them. An equation commonly referred to as a 
transfer function is a processing unit. This processing unit 
gathers and mixes data from other neurons before 
producing a numerical output. Process units are 
interconnected in a network and resemble actual 
neurons. Neural networks are composed of these 
patterns [19]. 

The basic structure of an ANN model is usually made up 
of three layers: the input layer, where known data is 
added to the model; the hidden layers; and the output 
layer, where the result of the last search is found. Each 
layer comprises different parts, called neurons or nodes, 
with a transfer function connecting it to the layer below 
it. The number of hidden layers is theoretically unlimited; 
it should be mentioned [35]. 

Consider that there are (n) number of input variables in 
the input node (xi, i = 1, 2,..., n), (p) number of nodes in 
the hidden layer (zj, j = 1, 2,..., p), and (k) the number of 
output variables in the output node (ym, m = 1, 2,..., k). 
The ANN model can be described in Equations (6) and (7). 

ŷ𝑚 = ƒ𝑦(∑ 𝑧𝑗𝑊𝑘𝑗 + 𝑏𝑘
𝑝
𝑗=1 ) (6) 

𝑧𝑗 = ƒ𝑧(∑ 𝑥𝑖𝑊𝑗𝑖 + 𝑐𝑗
𝑛
𝑖=1 ) (7) 

Where the weight parameters Wkj and Wji indicate the 
strength of the connections between the nodes, bk, and 
cj are the bias functions, and fy and fz are the activation 
functions connected with weight parameters. 

The main objective of the ANN model is to optimize the 
best weight parameters using a training algorithm. The 
backpropagation technique is most typically used for ANN 
training, which works by readjusting the weight 
parameters between the hidden and output layers to 
minimize output error. There is no exact procedure to 
determine how many hidden nodes are best, so trial-and-
error methods are used to find the best number of hidden 
nodes. However, it was shown that better outcomes may 
be achieved when the number of hidden nodes is less 
than or equal to the number of input nodes. Several 
activation functions, including the sigmoid, hyperbolic 
tangent, and sign functions, can also learn nonlinear 
correlations between the input and output. In ANN 
modeling, the objective is to create a model that improves 
accuracy on the training set and then use that model on 
the test set [36]. 

In order to figure out the efficiency of ANNs, we divided 
the input data into three sets. The training data set has 

been used to compute gradients to improve network 
weights. The second set of data, which is used for 
validation, determines the best neural network training. 
In reality, the lowest error from the validation phase 
determines network weights and biases. Regularization 
can be performed using a validation set to prevent 
overfitting. After the validation stage of a network, its 
effectiveness is measured using the test dataset. The 
training, validation, and testing stages data are randomly 
selected using various percentages. Training, validation, 
and testing sets can typically use 70%, 15%, and 15% of 
the data, respectively [37]. 

The ANN approach was used in this research for 
prediction modeling in which pavement distress, 
including alligator cracking, block cracking, wheel path 
longitudinal crack, non-wheel path longitudinal crack, 
transverse crack, patches area, bleeding area, raveling 
area, pumping and bleeding length and wheel path length 
cracked were imported as input variables, and IRI was 
imported as the target variable. A multilayer feed-
forward backpropagation network was created and 
trained with the Levenberg-Marquardt algorithm in 
MATLAB© software. The number of neurons in the 
hidden layer can affect the overall number of weights in 
an ANN model. Selecting a sufficient number of neurons 
in the hidden layer is important. If the hidden layer has 
few neurons, the ANN will have less computational 
resources to deal with the problem. When too many 
neurons are in the hidden layer, the network can learn 
insignificant information regarding the training set that is 
usually unimportant to the overall problem's behavior. 
Therefore, using the minimum number of neurons in the 
hidden layer is important. 

Figure 4 shows the relationships between the predicted 
and calculated values using the created ANN model. In 
this study, the R2 value used to determine the importance 
of the ANN model developed is 0.684241. The results 
show that 68.4% of the variance in the IRI could be related 
to the variance of pavement distress in the developed 
model. 

 
Figure 4. ANN model prediction accuracy 

Table 6 shows the structural features of the ANN model 
developed and calibrated within the scope of the study. 
As the architecture of the network, there are 22 neurons 
expressing distress along with severity levels in the input 
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layer and one neuron expressing IRI in the output layer. 
Many hidden layers and many neurons were analyzed in 
the calibration of the network. The highest level of 
performance was found in 23 neurons in a single hidden 
layer. 

Table 6. Structural details of the ANN model 

The structure of the Network 
used 

22 inputs, 23 hidden 
layers, and 1 output 

Percentage of the data used for 
training, validation, and testing 

Training: 70% of the data 
Validation: 15% of the 
data 
Testing: 15% of the data 

Type of Network 
Feed Forward Back 
Propagation 

Function used for training Backpropagation 
Transfer Function TANSIG 
Training Algorithm  Levenberg-Marquardt 
Performance Function Mean- Squared Error 

4. Discussion 

In the study, nonlinear regression, MARS and ANN 
methods were used to model the relationships between 
inputs and outputs. Briefly, a method progressing from 
simple to complex was preferred in modelling the 
relationships between surface distortions and IRI. 
Besides, nonlinear regression analysis, though relatively 
interpretable, has limited flexibility in capturing complex 
relationships between variables. MARS offer adaptability 
and non-parametric modeling, automatically identifying 
interactions without distribution assumptions, yet may 
suffer from increased complexity and potential over-
fitting. ANNs excel in capturing intricate non-linear 
patterns, adaptively learning from data, but their black-
box nature, tendency to over fit, and computational 
demands can limit interpretability and make them 
resource-intensive. The choice among these approaches 
hinges on a trade-off: nonlinear regression for 
interpretability, MARS for a blend of interpretability and 
adaptability, and ANNs for maximal predictive accuracy 
while accepting their complexity and computational 
requirements.  

All three mathematical modelling techniques used in the 
study are solution tools frequently used in science. They 
have been the subject of numerous studies and scientific 
publications for years. When you want to examine the 
recent developments and usage examples of these 
approaches, you can look at Frost [38] for nonlinear 
regression, Rodriguez [39] for MARS, and Aggarwal [40] 
for ANN. 

To evaluate more objectively the modeling approaches 
used in this study between pavement distress and IRI, it is 
necessary to compare all modeling approaches by using 
traditional statistical comparison methods such as 
correlation coefficient (R), determination coefficient (R2), 
root mean square error (RMSE), Nash-Sutcliffe Efficiency 
Coefficient (NSCE), mean absolute error (MAE), and 

normalized root mean square error (NRMSE). Correlation 
coefficient in equality (8), determination coefficient in 
equality (9), root mean square error in equality (10), 
Nash-Sutcliffe Efficiency Coefficient in equality (11), mean 
absolute error in equality (12) , and normalized root mean 
square error are expressed mathematically in Equation 
(13). 

R= 
∑ (Xi - Ẋ) (Yi- Ȳ)

n
i=1

√∑ (Xi - Ẋ)2 × ∑ (Yi- Ȳ)
n
i=1

2n
i=1

 (8) 

R2= 
(∑ (Xi - Ẋ) (Yi- Ȳ)

n
i=1 )2

∑ (Xi - Ẋ)2 × ∑ (Yi- Ȳ)
n
i=1

2n
i=1

 (9) 

RMSE= √
∑ (Xi - Yi)

2 n
i=1

n
 (10) 

NSCE=1- [
∑ (Xi - Yi)

2 n
i=1

∑ (Xi - Ẋ)2 n
i=1

] (11) 

MAE= 
∑ |Xi - Yi|

n
i=1

n
 (12) 

NRMSE= 
√

1

n
 ∑ (Xi - Yi)

2 n
i=1

Xmax- Xmin
 (13) 

Here Xi is the observed value, Yi is the predicted value, Ẋ 
is the average of the observed value, Ȳ is the average of 
the observed value, n is the number of samples in the data 
set, Xmax is the maximum observed value, and Xmin is the 
minimum observed value. The statistical parameter 
values found in the three different modeling approaches 
evaluated in the study are shown in Table 7. 

Table 7. Comparison of the model's performance 

 MARS SPSS ANN 

R 0.789372378 0.711546953 0.827188522 
R2 0.623108751 0.506299066 0.684240851 

RMSE 0.416683207 0.479350493 0.382164363 
NSCE 0.623108751 0.50121841 0.682967028 
MAE 0.313949559 0.351148571 0.294739697 

NRMSE 0.102757879 0.118212204 0.094245218 

These results indicate that the ANN model performs 
better than MARS and SPSS models. Similar findings were 
obtained in previous research, confirming that the ANN 
model's prediction accuracy is satisfactory [7, 8, 41]. The 
prediction performance of the MARS approach is also 
better than that of the most used SPSS approaches. 

5. Conclusion 

Several pavement performance prediction models have 
been constructed using in-service pavement databases. 
However, the LTPP database was used in this study 
because it is the world's largest pavement performance 
database. The LTPP program is the largest pavement 
performance research program, collecting data from over 
2,581 pavement sections in the United States and Canada 
over the past 33 years and aiming to study pavement 
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performance in these sections for a longer period of time. 
The LTPP program includes two types of experiments: 
General Pavement Studies (GPS) and Specific Pavement 
Studies (SPS). 

The models have been developed based on the Long-
Term Pavement Performance (LTPP) Database. The LTPP 
data were derived from GPS-1 and GPS-2 sections for 
seven U.S. states: Arizona, Florida, Minnesota, 
Mississippi, North Carolina, Oklahoma, and Tennessee. 
The main purpose of this study was to create pavement 
performance models to predict IRI from pavement 
distress using LTPP data. 

In this study, regression analysis was performed to 
develop models from the data collected to study the 
relationship between IRI as the dependent variable and 
pavement distress as the independent variable. To 
develop the best model, regression analysis is performed 
using three methods Nonlinear Regression Analysis, 
Multivariate Adaptive Regression Splines (MARS), and 
Artificial Neural Networks (ANN). 

The developed models have coefficients of determination 
(R2) equal to 0.516, 0.623, and 0.684 for nonlinear 
regression analysis, multivariate adaptive regression 
splines (MARS), and artificial neural networks (ANN), 
respectively. The models generated, calibrated and put 
into use within the scope of the study are explained in 
sections 3.1, 3.2 and 3.3 of the study. Finally, the results 
showed that the developed ANN model could predict the 
IRI of GPS-1 and GPS-2 pavement sections with very good 
accuracy and less error compared to nonlinear regression 
analysis and multivariate adaptive regression splines 
(MARS) models. The most valuable statistics error 
analyses, including R, R2, RMSE, NSCE, MAE, and NRMSE, 
were employed to compare the developed models are 
also supported the ANN model for better performance. 

The performance levels of mathematical models are 
evaluated with the benchmark parameters allowed by 
statistics. In this study, six of these benchmark 
parameters were used for comparison. According to all 
these parameters, it is clear that the level of agreement 
between the prediction results of the models developed 
with three different techniques and the actual data is 
highest in the model developed with the ANN approach. 
This comparison is explained in chapter 4. 

Due to the complex structure of fieldwork and the need 
for intensive labour, surface distress and IRI 
measurements cannot be made on very recent dates and 
in a recurring format every year. In addition, although 
some surface distress data have a negative impact on the 
mechanical strength of the pavement, their negative 
impact on surface irregularity (roughness) is limited. Even 
if some surface distresses are on the coating surface, their 
effect on discomfort remains limited since they are not on 
the trace of the IRI measurement. All these constraints 

are the main reasons prediction similarities remain at 
limited levels in modelling studies. As a result, the effects 
of each distress type and severity on IRI can be 
determined with precision only with similarity models 
created in a universe where data sets are created under 
idealized conditions. It is clear that until these idealized 
conditions are met, repeating similar studies on data 
produced under actual application conditions will 
continue to shed light on science. 
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