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The term developmental dysplasia of the hip (DDH) describes a range of hip 
abnormalities affecting newborns where the femoral head and acetabulum are in 
improper alignment or grow abnormally, or both. The ultrasonographic evaluation 
technique  rely on the capability of the ultrasonographer to pick up the accurate 
frame used for exact calculations. In our study we developed a new computer aided 
system that determines the exact frame from real time 2D ultrasound images and 
calculates the accuracy rate for each result. The deep learning architectures recently 
used in literature were utilized for these processes. In addition, transfer learning 
was carried out to increase the performance of the system using pretrained 
networks (SqueezeNet, VGG16, VGG19, ResNet50 and ResNet101). One of the best 
methods of object detection, You Only Look Once (YOLO) model, was used with pre-
trained networks to determine DDH location. As a result of the study, the 
performance of the deep neural network model proposed with the help of these pre-
trained networks was evaluated. When the obtained results were compared with 
expert opinions, frames (standard planes) in 605 of 676 (89.05%) test images were 
correctly detected. The accuracy rates for the used pre-trained networks were 
obtained as SqueezeNet 0.79, VGG16 0.95, VGG19 0.96, ResNet50 0.88 and 
ResNet101 0.93. 

  

GELİŞİMSEL KALÇA DİSPLAZİSİ TANISINDA DERİN ÖĞRENME 
YÖNTEMLERİYLE ULTRASON TARAMALARINDAN STANDART DÜZLEM 

TESPİTİ 
 

Anahtar Kelimeler Öz 

GKD, 
Standart Düzlem, 
Derin Öğrenme, 
Transfer Öğrenme, 
YOLO. 

Gelişimsel kalça displazisi (GKD) terimi, femur başı ve asetabulumun yanlış hizada 
olduğu, anormal şekilde büyüdüğü veya her ikisinin birden olduğu yeni doğanları 
etkileyen bir dizi kalça anormalliği olarak tanımlanır. Ultrasonografik 
değerlendirme tekniği, ultrasonografi uzmanının kesin hesaplamalar için kullanılan 
doğru çerçeveyi(standart düzlem) seçme yeteneğine dayanır. Çalışmamızda, gerçek 
zamanlı 2B ultrason görüntülerinden standart düzlemi belirleyen ve her bir sonuç 
için doğruluk oranını hesaplayan yeni bir bilgisayar destekli sistemi geliştirilmiştir. 
Bu işlemler için literatürde son zamanlarda kullanılan derin öğrenme 
mimarilerinden yararlanılmıştır. Ayrıca önceden eğitilmiş ağlar (SqueezeNet, 
VGG16, VGG19, ResNet50 ve ResNet101) kullanılarak, sistemin performansını 
artırmak için transfer öğrenmesi gerçekleştirilmiştir. Nesne algılamanın en iyi 
yöntemlerinden biri olan You Only Look Once (YOLO) modeli, DDH konumunu 
belirlemek için önceden eğitilmiş ağlarla birlikte kullanılmıştır. Çalışma sonucunda 
önceden eğitilmiş bu ağlar yardımıyla önerilen derin sinir ağı modelinin 
performansı değerlendirilmiştir. Elde edilen sonuçlar uzman görüşleri ile 
karşılaştırıldığında 676 test görüntüsünün 605(%89,05) 'inde doğru kareler 
(standart düzlemler) doğru olarak tespit edilmiştir. Kullanılan önceden eğitilmiş 
ağlar için doğruluk oranları SqueezeNet 0.79, VGG16 0.95, VGG19 0.96, ResNet50 
0.88 ve ResNet101 0.93 olarak elde edilmiştir. 
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1. Introduction 
 
Developmental dysplasia of the hip (DDH) describes a wide spectrum of abnormal hip development that takes 
place during infancy and early development, and has an important share in childhood disabilities. In the definition 
of DDH,  a wide range of severity conditions that range from mild acetabular dysplasia without hip dislocation to 
detect hip dislocation are encompassed (Yang, Zusman, Lieberman, & Goldstein, 2019), 29% of primary hip 
replacements in people aged under 60 years are reported to be caused by DDH (Dezateux & Rosendahl, 2007). In 
addition, in women under 40, DDH is reported to be the most common cause of hip arthritis, and it has been also 
reported that 5% to 10% of all total hip replacements in the United States occurred because of DDH (Shaw & Segal, 
2016). Clinical hip imbalance occurs in 1% to 2% in infants who were born on time, and can be detected from 
imaging studies of hip imbalance or hip maturation at rates up to 15%. Universal clinical screening should be 
conducted as a part of the physical examination of the newborn.  
 
Although clinical examination continues to be the mainstay in the process of diagnosing the DDH in the newborns, 
it is not possible to detect DDH in all cases by physical examination. Imaging by ultrasonography or radiography 
is one of the methods widely used for screening or confirmation of the diagnosis as well as for the classification of 
the severity of the dysplasia.  
 
The ultrasound hip screening method invented by Graf in 1980 is used for assessing the appropriate maturation 
of the hip joints of infants (Schams, Labruyère, Zuse, & Walensi, 2017). With this method, ultrasound assessment 
of the hip is performed by quantifying the maturity of the cartilaginous and bony acetabular roof and the position 
of the femoral head based on sonographic structures (Graf, 2006). The hip types, as shown in Figure 1, are assessed 
based on the Graf method range between type I and IV. Type I is related to a normal hip that has a good bony 
modeling (large arrow in Figure 1), a sharp bony rim (arrowhead) and a narrow, covering cartilage roof triangle 
(small arrow). Type II embraces physiologically immature hips with rounded rim and cartilage roof triangle (Type 
2a) and encompasses hips with delayed pathological ossification cations (Type 2a-c). In addition, it encompasses 
hips with deficient bony modeling, rounded/flattened bony rim and displaced cartilage roof (Type D). Types 3 and 
4 include non-concentric hips with a weak bone model, a flattened bony rim, and a displaced cartilage triangular 
roof (Dezateux & Rosendahl, 2007). 

 

 
Figure 1. Hip types (1–4) in Graf method (Dezateux & Rosendahl, 2007) 

 
When the same sonographic section passing through the hip joint is used in the same plane, the Graff method can 
be reproducible. For hip ultrasound, these sections are as follows: The lower limb of the bony ilium in the depth of 
the acetabular fossa, mid-section of the bony acetabular roof and the acetabular labrum. A sonogram will not be 
helpful and thus it cannot be used for diagnosis of the condition when one of these points is either missing or 
unclear. For ultrasound purposes, the lower limb of the os ilium is the center of the acetabulum. In addition, it 
becomes impossible for the sectional plane to pass through the center of the acetabulum if this landmark is not 
seen on ultrasound images. Even if the acetabular labrum and the sectional plane are correctly shown, diagnosis 
may not be made in a centered hip joint (Graf, 2006). 
 
When the Graf method is examined, it is understood that the acquisition of the standard plane angle is required 
for the diagnosis, which is primarily proportional to placing the patient at the right angle and using the correct 
ultrasound probe angle. In addition, the skill and knowledge of the expert is very important for this process. The 
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development of a computer-aided and automated standard plane image detection system may reduce the influence 
of variables on DDH diagnosis.  
 
2. Literature Survey 
 
In the current study, a software based on deep learning methods (DLM) was developed to capture standard plane 
frames in ultrasound images. The system aims to help the expert by capturing the standard plane frame from real-
time ultrasound images. This study aims to help the diagnosis of DDH by determining the correct diagnostic image 
using DLMs over real-time 2D ultrasound images. It is seen that DLMs have been used frequently by researchers 
in the diagnosis, treatment planning or visualization stages of DDH.  
 
Golan et al. conducted a study in 2016 that aimed to provide the fully automating of Graf’s Method using deep 
convolutional neural network (CNN). The angle values of the Graf method were determined by segmenting the 
ilium and acetabular roof areas in the two-dimensional images. It was reported that there was less than 5% 
discrepancy between 77% of the test results obtained with the proposed deep architecture and the estimates made 
by the expert (Golan, Donner, Mansi, Jaremko, & Ramachandran, 2016). 
 
In the study conducted by Paserin et al. in 2017, the researchers proposed near real-time classification process for 
3D scans using CNN. It was aimed to determine whether the scans obtained based on the classification process 
were adequate or inadequate for DDH diagnosis. In their study, they designed a 12-layer CNN architecture using a 
ReLu activation function with 3 convolutions and 3 fully connected layers. They stated that the fact that the 
application was not full real-time was a limitation in their study and clinical studies were to be conducted in their 
subsequent studies. They also indicated that the study had limitations since it was not a real time application, and 
further stated that they would conduct tests in their follow-up clinical study (Paserin, Mulpuri, Cooper, Hodgson, 
& Abugharbieh, 2017).  
 
Hareendranathan et al. proposed a method to automatically segment the acetabular bone based on training a CNN 
network using multi-scale super-pixels. They tested this method on 2D ultrasound images of 50 infant hips and 
the root mean square error was obtained as 1.8 ± 0.7 mm when compared to manual segmentation. They argued 
that the proposed method could be used for accurately classifying normal vs. dysplastic hips and automatic 
diagnosis of hip dysplasia in infants (Hareendranathan et al., 2017). 
 
In another study conducted by Paserin et al. in 2018, the researchers performed a near real-time classification of 
3D ultrasound scans using transfer learning approach in CNN networks. They implemented Squeezenet in transfer 
learning and demonstrated that their approach achieved 93% classification rate on 40 datasets taken from 15 
pediatric patients (Paserin, Mulpuri, Cooper, Abugharbieh, & Hodgson, 2018).  
 
In a study conducted in 2018, Tang et al. aimed to classify images at a sufficient level for diagnosis of DDH using 
the Region Proposal Network (RPN) method. They used the VGG-16 model and 3D U-Net based architecture to 
learn convolutional features of the backbone. The average Intersection over union (IoU) was obtained as 0.709 
(Tang, Zhang, Cobzas, Jagersand, & Jaremko, 2018). 
 
In another study, Pasarin et al. aimed to rapidly and automatically detect the accurate scan for DDH diagnosis using 
Long Short-Term Memory (LSTM) based CNN and Recurrent Neural Network (RNN) architectures. They reported 
to achieve 82% accuracy using 200 3D US volumes taken from 25 pediatric patients where each runtime was 
performed under 2 seconds (Paserin, Mulpuri, Cooper, Hodgson, & Garbi, 2018).  
 
In 2020, Chen et al. compared two different methods proposed for femur and acetabular roof segmentation in 2D 
ultrasound images. In the first method, mean filtering, morphological processing and least squares operation were 
used while in the second method, a CNN named FNet was utilized. In conclusion, the proposed deep neural network 
architecture method was found to provide better segmentation than other methods (Chen et al., 2020). 
 
When the literature is examined; Researchers have carried out many studies on ultrasound images for the 
diagnosis of DDH, using various segmentation methods. They also focused on Deep Neural Networks (DNN) 
methods for the classification of these images. However, no study has been found in the literature to capture the 
image that can make an accurate diagnosis from flowing ultrasound images. For this reason, this study will fill a 
large gap in the literature. 
 
In this study, it was aimed to detect the standard plane to be used in DDH diagnosis from real-time ultrasound 
images. Pre-trained networks were also utilized in order to increase the classification success of the system in the 
application realized through the deep learning method and You Only Look Once (YOLO) object recognition 
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infrastructure. In addition, models created by combining SqueezeNet, VGG16, VGG19, ResNet50 and ResNet101 
pre-trained CNN networks with YOLO were tested and their performance was discussed. The most important and 
first step to make the correct diagnosis of DDH is to capture the right frame. It is thought that the success of the 
diagnosis of DDH will be increased thanks to the study carried out. 
 
3. Material and Method 
 
Deep Neural Networks is an artificial neural network model with one or more layers and is applied extensively in 
image classification, segmentation and object detection studies (Qassim, Verma, & Feinzimer, 2018). It was 
introduced by (Fukushima, 1980) and improved by (LeCun, Bottou, Bengio, & Haffner, 1998) to be used in various 
fields and studies as summarized in (Ciresan, Meier, Gambardella, & Schmidhuber, 2011; Cireşan, Meier, 
Gambardella, & Schmidhuber, 2010) and is known to achieve higher success rates depending on the increased 
number of layers as structured into two modules. Feature extraction is performed first by detecting the 
distinguishable features across training images which is then followed by analysis of the extracted features for 
classification of images into an image category (Rhu, Gimelshein, Clemons, Zulfiqar, & Keckler, 2016).  
 
The higher classification success rate achieved by Hinton’s team in ImageNet competition in 2012 increased the 
interest in DNNs. 26.1% classification success of ImageNet, which is currently used with the name AlexNet, has 
been reduced to 15.3% by Hinton’s team. The error rates have been further reduced (Krizhevsky, Sutskever, & 
Hinton, 2012) by the architectures developed in the following years (AlexNet-2012 (Krizhevsky et al., 2012), 
GoogleNet-2014 (Szegedy et al., 2015), VGGNet-2014 (Simonyan & Zisserman, 2014), ResNet-2015 (Szegedy, Ioffe, 
Vanhoucke, & Alemi, 2016), SqueezeNet-2016 (Iandola et al., 2016), NasNet-2017 (Krizhevsky, Sutskever, & 
Hinton, 2017) etc.). 
 
In traditional machine learning methodology, training data and testing data are taken from the same domain, and 
therefore input feature space and data distribution characteristic are the same, which directly affects the system 
performance. On the contrary, in some real-world machine learning scenarios where training data is expensive or 
difficult to obtain, this assumption does not hold. In addition, training processing times of these data are not at 
acceptable levels for normal users. Therefore, high-performance models (pre-trained networks) that are trained 
using more easily obtained data from different domains are required to be created. This methodology is called 
transfer learning (Weiss, Khoshgoftaar, & Wang, 2016). In order to use DNN networks with more effective 
performance, transfer learning approach is frequently employed using pre-trained networks, some of which are 
mentioned. 
 
YOLO was presented by Redmon et al. as an approach different from other methods of object detection (Redmon, 
Divvala, Girshick, & Farhadi, 2016). The methods are used to detect a class for the objects and evaluate it at various 
locations and scales in the test image, and therefore to determine the class to which the object belongs. This 
method is complex and difficult to optimize. YOLO aims to detect the object from image pixels, to conduct all 
processes including bounding box coordinates and class probabilities using a single regression formula (Redmon 
et al., 2016). As single network architecture is used in YOLO to process the input image and generate the output 
results, RPNs are used for all object recognition predictions. This feature of the YOLO model significantly increases 
its operating speed (Wong et al., 2019). When using this system, by employing the YOLO process once, object 
detection is provided without continuously recalling the classifier to predict the objects that are present and their 
location. In YOLO, training is conducted on full images and detection performance is directly optimized. It has a 
simple and extremely fast running structure compared to other methods and thus performs faster object detection 
in real-time webcams (Redmon et al., 2016).  
 
Additionally, the input image is divided into an S*S grid by YOLO. If an object’s center falls into a grid cell, then the 
detection of that object is conducted by that grid cell. Bounding boxes and confidence scores of those boxes will be 
predicted by each grid cell. The higher confidence scores indicate higher classification accuracy for the system. 
The confidence score becomes zero when no object in that cell exists. There are five predictions in each box as x, 
y, w, h, and confidence predictions (cp). The x and y predictions represent the coordinates, w and h predictions 
represent the width and height relative to the whole image. The confidence prediction represents whether there 
is a relationship between the used box and the images to be classified. Each grid cell also predicts a probability, 
and these probabilities are conditioned for the object (Van Rijthoven, Swiderska-Chadaj, Seeliger, van der Laak, & 
Ciompi, 2018). YOLO Regression Formula is then S*S*(B*5+C), where S*S is the grid size, B is the bounding boxes, 
5 is the prediction number and C is the class probability of the boxes, as depicted in Figure 2. 
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Figure 2. Sample grid and result with YOLO (Irene, Haidi, Faza, & Chandra, 2019) 

 
1000-class ImageNet 2012 dataset is used to train YOLO network. YOLO training results are compared with other 
real-time detection systems on PASCAL VOC 2007 and VOC 2012.  YOLO makes more localization errors when 
compared to Fast R-CNN, which is the most successful network of VOC 2007 (Redmon et al., 2016). Although Fast 
R-CNN makes less localization errors, it makes more background errors (Redmon & Farhadi, 2017). When 
compared to the models in VOC 2012, YOLO scores 8-10% lower than R-CNN and Feature Edit on categories like 
bottle, sheep, and tv/monitor. However, on other categories like cat and train, YOLO achieves higher performance. 
When YOLO was combined with R-CNN and, a higher performance was obtained. 2.3% improvement was provided 
with Fast R-CNN and YOLO combination, boosting it 5 spots up on the leaderboard (Redmon et al., 2016). YOLO 
architecture is presented in Figure 3. 
 

  
Figure 3. YOLO architecture (Redmon & Farhadi, 2017) 

 
In addition, recall is relatively low in when compared to other RPN-based methods. YOLOV2 was created to 
improve these shortcomings by maintaining YOLO’s classification accuracy. It was obtained by adding a high 
resolution detector to the YOLO model. It was observed that the shortcomings of YOLO decreased and the success 
rate increased by 1.8% with the addition of a high resolution detector (Redmon & Farhadi, 2017).  
 
3.1. Proposed Method 
 
The flow chart of the method proposed in this study is shown in Figure 4. The main and most basic stage of the 
study is the acquisition of images used for diagnosis of DDH. At this stage, the patient records (retrospectively) 
obtained from Bagcilar Training and Research Hospital (Istanbul, Turkey) were used. For training phase of the 
system, 140 single-frame images in which the specialist physician performed the diagnosis were selected. For 
testing the system, 8 of the 5-10 second videos containing the recording made during the diagnosis process were 
obtained. An ultrasound system (Toshiba Aplio 400) was used to obtain single frame images and videos. All images 
had 800*600 resolution and were in RGB color mode. The single frame images were saved in JPEG format and the 
videos were stored in MP4 format. In Figure 5, sample images in the data set are given. 



ÇEVİK and ANDAÇ 10.21923/jesd.1064904 

 

1019 
 

 

 
Figure 4. Flow chart of the designed system 

 

   
Figure 5. Examples of the images used in study 

 
In the second stage, the obtained data set was labeled. The sections used for diagnosis of the training images used 
for DDH were labeled and verified under the supervision of a specialist physician. During the test process, the 
similarity of these sections in the streaming image was used. An example labeling process that was performed with 
Matlab Image Labeler (Matlab, 2020) is shown in Figure 6. 
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Figure 6. Image labeling process 

 
After the data were labeled and prepared, the data were trained with DNN using the software developed within 
the scope of the study. Some pre-trained networks that have been previously tested and validated were used for 
DNN design. These are YOLO architecture based DNN networks such as SqueezeNet, VGG16, VGG19, ResNet50 and 
ResNet101 pre-trained networks.  
 
The input data of all these networks were set to 224*224*3. For each image, the DDH value with a single class was 
given as the output data. The prepared deep networks were subjected to the training process with the same 
parameters. These settings are given in Table 1. 
 

Table 1. Training parameters for the proposed methods 

OPTION VALUE 

NUMBER OF EPOCHS 100 

BATCH SIZE 16 

LEARNING RATE 0.001 

OPTIMIZER SGDM 

INPUT SIZE 224*224*3 

OUTPUT SIZE 1 (DDH) 

VERBOSE True 

VERBOSE FREQUENCY 1 

SHUFFLE Never 

 
LOSS values of the model created during training are plotted in Figure 7, for different types backbone architectures. 
The change of LOSS values indicate how the model’s estimate is different from the real value. In figure, the 
horizontal axis indicates the number of iterations and the vertical axis indicates the values. 
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Figure 7. LOSS values of ResNet50, ResNet101, VGG16, VGG19 and SqueezeNet architectures during training 

 
In addition, training processes were completed at different times depending on the structure of the network. 
Training times depending on the network structure and the minimum Root Mean Square Error (RMSE) and LOSS 
values obtained by each network are shown in Table 2. 
 

Table 2. Training time for the proposed methods 

BACKBONES TRAINING TIME (HH:MM:SS) MIN RMSE MIN LOSS 

RESNET50 02:15:03 0.06 0.0037 

RESNET101 04:21:11 0.07 0.0056 

VGG16 03:37:04 0.06 0.0036 

VGG19 04:20:07 0.07 0.0044 

SQUEEZENET 01:05:08 0.14 0.0190 

 
In the last stage, the trained DNNs were tested with real-time videos that were in the data set but were not 
previously presented to the system. The single-frame images captured according to a certain DDH similarity ratio 
(for example, 0.9 and above treshold) of the trained network in the streaming image were re-evaluated by the 
expert and it was decided whether these images could be used for DDH diagnosis. In Figure 8, the images with a 
similarity value of over 0.9 obtained during the test process are given.  
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Figure 8. The frames determined as a result of the test process 

 
4. Experimental Results 
 
Video tests were conducted on YOLO architectures powered by pre-trained networks designed within the scope 
of the study. For testing with 8 videos containing the image sets previously used by the specialist physician for 
DDH diagnosis were selected. In these videos, there were frames that were appropriate for more than one 
diagnosis. The specialist doctor had performed the diagnosis from the frame that could be captured manually from 
the video. With the designed DNN model, the frames that could be used for DDH diagnosis in the video were 
determined. These obtained frames were then examined by the specialist physician and it was determined 
whether they could be used in the diagnosis of DDH. 
 
Intersection over Union (IoU) evaluation metric is used to evaluate the results of models working on object 
detection from images. In this study, IoU metric was used to determine the correct image. A metric that helps 
measure whether the region proposition suggested by the model are acceptable for the location of the object in 
the image. The IoU evaluates the overlap between the predicted region and the actual reference value. It is 
formulated as shown in Equation 1 and Figure 9 (Gamage, Wijesinghe, & Perera, 2019) 
 

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 ∩  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑎𝑟𝑒𝑎 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
 

 
(1) 

 

 
Figure 9. IoU formula 
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In determining the frames, the threshold rate for IoU was chosen as 0.9 and above. For each network, a set of 
frames with 0.9 or more threshold for IoU in DDH detection was extracted from each video. The obtained values 
and expert opinions are shown in Table 3. 
 

Table 3. Test results in real-time videos for detection standard plane 

VIDEO 
TIME  
(MINUTE) 

FRAME BACKBONES 
0.9 OR MORE  
IOU FRAMES 

0.93 OR MORE  
IOU FRAMES 

TOTAL TEST TIME  
(SECOND) 

VIDEO (1).MP4 9 175 

ResNet50 42 32 33.25 
Resnet101 18 4 44.28 

VGG16 35 21 42.82 
VGG19 40 4 51.39 

SqueezeNet 23 5 26.72 

VIDEO (2).MP4 10 188 

ResNet50 21 4 29.41 

Resnet101 58 17 44.7 
VGG16 21 6 41.18 

VGG19 38 10 48.88 
SqueezeNet 19 1 22.44 

VIDEO (3).MP4 10 188 

ResNet50 11 1 32.76 
Resnet101 61 18 44.88 

VGG16 22 5 42.71 
VGG19 56 4 47.93 

SqueezeNet 41 26 24.45 

VIDEO (4).MP4 10 188 

ResNet50 45 21 30.57 
Resnet101 2 1 45.83 

VGG16 55 30 42.42 
VGG19 35 15 48.4 

SqueezeNet 64 55 24.76 

VIDEO (5).MP4 10 188 

ResNet50 85 54 30.37 

Resnet101 31 4 45.83 
VGG16 64 34 42.65 

VGG19 90 45 48.94 
SqueezeNet 42 15 24.55 

VIDEO (6).MP4 10 188 

ResNet50 75 48 32.47 
Resnet101 57 4 44.92 

VGG16 92 41 45.05 
VGG19 96 38 51.55 

SqueezeNet 61 14 25.31 

VIDEO (7).MP4 7 128 

ResNet50 3 1 21.22 
Resnet101 12 1 30.4 

VGG16 27 11 29.71 
VGG19 17 1 33.65 

SqueezeNet 64 57 17.65 

VIDEO (8).MP4 4 79 

ResNet50 18 5 13.13 

Resnet101 23 8 19.04 
VGG16 12 1 18.11 

VGG19 28 13 20.84 
SqueezeNet 2 1 10.56 

 
When Table 4 is examined, it is seen that the total number of frames of 8 videos is 1322, and the number of frames 
that can be used in DDH diagnosis from each treshold rate (0.9 and 0.93) is respectively 1606 and 676. When the 
test process durations were examined, it was found that the processing of a frame was 1.68 seconds for ResNet50, 
2.41 seconds for Resnet101, 2.30 seconds for VGG16, 2.65 seconds for VGG19, and 1.33 seconds for SqueezeNet. 
Tests were performed on data sets with fewer number of frames having a value of 0.93. The results obtained as a 
result of examining the obtained DDH diagnosis frames (0.93 or More IoU Frames) are given in Table 4 and Table 
5. 
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Table 4. Video based comparison of results for experts and proposed method 

VIDEO BACKBONES 
0.93 OR MORE  
IOU FRAMES 

EXPERT’S  
CORRECTED FRAME 

ACCURACY 
AVERAGE  

ACCURACY 

 

VIDEO (1).MP4 

ResNet50 32 31 0.97 

0.9747 

 

Resnet101 4 4 1.00  

VGG16 21 19 0.90  

VGG19 4 4 1.00  

SqueezeNet 5 5 1.00  

VIDEO (2).MP4 

ResNet50 4 4 1.00 

0.9482 

 

Resnet101 17 16 0.94  

VGG16 6 6 1.00  

VGG19 10 8 0.80  

SqueezeNet 1 1 1.00  

VIDEO (3).MP4 

ResNet50 1 1 1.00 

0.8959 

 

Resnet101 18 15 0.83  

VGG16 5 4 0.80  

VGG19 4 4 1.00  

SqueezeNet 26 22 0.85  

VIDEO (4).MP4 

ResNet50 21 20 0.95 

0.8911 

 

Resnet101 1 1 1.00  

VGG16 30 28 0.93  

VGG19 15 14 0.93  

SqueezeNet 55 35 0.64  

VIDEO (5).MP4 

ResNet50 54 40 0.74 

0.8415 

 

Resnet101 4 4 1.00  

VGG16 34 34 1.00  

VGG19 45 45 1.00  

SqueezeNet 15 7 0.47  

VIDEO (6).MP4 

ResNet50 48 44 0.92 

0.9492 

 

Resnet101 4 4 1.00  

VGG16 41 38 0.93  

VGG19 38 37 0.97  

SqueezeNet 14 13 0.93  

VIDEO (7).MP4 

ResNet50 1 1 1.00 

0.986 

 

Resnet101 1 1 1.00  

VGG16 11 11 1.00  

VGG19 1 1 1.00  

SqueezeNet 57 53 0.93  

VIDEO (8).MP4 

ResNet50 5 5 1.00 

0.9846 

 

Resnet101 8 8 1.00  

VGG16 1 1 1.00  

VGG19 13 12 0.92  

SqueezeNet 1 1 1.00  

 
Table 5. Network based comparison of results for experts and proposed method (0.93 Threshold) 

BACKBONES 
DETECTED 
FRAME  

EXPERT  
RESULT  

ACCURACY 

RESNET50 166 146 0.8795 
RESNET101 57 53 0.9298 

VGG16 149 141 0.9463 
VGG19 130 125 0.9615 

SQUEEZENET 174 137 0.7874 
TOTAL 676 602 0.8905 

 
5. Result and Discussion 
 
In the study, a deep learning-based model is presented to capture the standard plane image from real-time 
ultrasound images to be used for applying Graf method in diagnosis of DDH. YOLO object recognition 
infrastructure was used to determine the standard plane within the image. In addition, pre-trained networks were 
utilized to increase the classification success of the system. The models created by combining SqueezeNet, VGG16, 
VGG19, ResNet50 and ResNet101 pre-trained CNN networks with YOLO were tested and their performance was 
discussed. 
 
When the training and test durations of the designed models were examined, it was seen that the fastest system 
was the SqueezeNet model. When SqueezeNet was used in training, it was seen that the training phase was 
completed in at least half time shorter and in at most a quarter time shorter than the other networks. In addition, 
in the testing process, SqueezeNet was found to be much more successful than the other networks. When the 
training and test error rates were examined, it was determined that the architecture designed with VGG19 
produced very little difference success rates compared to other models. However, there was not much difference 
in the system success. When the number of frames captured in the test process was examined, it was seen that the 
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VGG19 model captured the accurate frames more than the others. 
 
When the results of the study were evaluated in general, it was observed that the proposed deep learning 
architectures used in obtaining the adequate and required standard plane for the experts to make the correct 
diagnosis were quite successful. In future studies, the design of these architectures for user application and the 
development of systems that assist experts can be handled. 
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