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Abstract: Sorting algorithms have been studied for more than 3 decades now. The aim of this paper is to implement some of the sorting 

algorithms using the CUDA language in a GPU environment provided by the Nvidia graphics cards. This empirical study is done for 

comparing the performance of the sorting algorithms in a run-time environment provided by the GPUs and the CUDA programming 

language. This study considers the implementation of bubble sort, insertion sort, quicksort, selection sort and shell sort algorithms. It is 

shown in this article that there is a significant amount of speed-up in using CUDA and the Nvidia architecture instead of a sequential 

code running on standard architectures. 
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1. Introduction 

CUDA programming language [1] is first introduced in 2008 by 

Nvidia, to run parallel computations on Nvidia devices, then 

Graphical Processing Units (GPUs), later accelerator devices 

from Nvidia only added to CUDA programming. Although, 

Message-Passing Interface (MPI) [2] library is used for massively 

parallel and cluster systems, it does not deliver any performance 

to a single PC. Hence, in this paper, it is decided to conduct an 

empirical study to illustrate how the graphics cards provided by 

Nvidia and the use of CUDA language can improve the 

computation times for sorting algorithms. 

Theoretically, a SM 2.0 CUDA capable GPU can execute 1024 

threads at a compute cycle [3]. That is equivalent of 1024 CPU 

cores, when doing a data-level computation in parallel, e.g. 

simple arithmetic operations.   

Finally, wall clock values are compared using the increasing 

output sizes for each sorting algorithm. By doing so, we believe, 

one can compare the theoretical execution time values to actual 

results, and decide if CUDA accelerates the execution times for 

the algorithms designed sequential effectiveness in mind.  

Next section gives an overview of sorting algorithms for classical 

computer architectures. Section 3 surveys some of the parallel 

sorting algorithms relevant to this study. In Section 4 

implementation of the aforementioned sorting algorithms using 

the CUDA programming language and the GPUs are discussed. 

In Section 5 test results are given in a comparative manner. 

Section 6 and 7 are devoted to discussions and conclusions. 

2. Sequential Sorting Algorithms 

2.1. An overview 

Sorting algorithms [4] are generally used for ordering elements in 

an array. The most conventional way is using alphanumerical 

ordering, and then the resulting sorted array can be used for 

merging and searching algorithms. Another use of sorting is 

increasing the human readability of an output. 

Five sequential sorting algorithms with different computational 

complexities are considered, namely, bubble sort, selection sort, 

insertion sort, quicksort and shell sort.  

Bubble and quicksort are types of exchange sorts where elements 

in the array are compared pairwise and interchanging the 

elements only if necessary. Selection sort is a type of selection 

sorts where an extreme value (e.g. a maximum or a minimum) is 

chosen and then sorting is done once according to that item. After 

that many selection operations are made for finalizing the sorting 

the array. Insertion and Shell sorts are types of insertion sorts 

where final sorted array (or list) is build one by one, i.e. moving 

each element of the array in to desirable position until the list is 

completely sorted in the desired order. 

The CUDA implementations of algorithms such as merge sort, 

distribution sorts or hybrid sort will be considered in a separate 

study. 

2.2. Computational Complexities 

Computational complexity [5] is a theory which is about relating 

the computational steps to execute a code that does some 

arithmetic operations, with the measuring of these steps done 

according to the time and memory space taken on a particular 

machine. Then big-O notation can be used to associate the 

complexities to time values and compare among the different 

algorithms.  

Generally speaking, sorting algorithms have computational 

complexities between O(n) and O(n2). Table 1 below summarizes 

the computational complexities of the sorting algorithm in 

question using the big-O notation. 

 
Table 1. Theoretical complexity values for sequential algorithm 

Sorting 

Algorithm 
Best case Avg. case 

Worst 

case 

Parallel 

prediction – 
p=#of treads 

Bubble  O(n) O(n2) O(n2) O(n2/p) 

Insertion  O(n) O(n2) O(n2) O(n2/p) 

Quick O(nlogn) O(nlogn) O(n2) O(nlogn/p) 

Selection O(n2) O(n2) O(n2) O(n2/p) 

Shell  O(n) O(n3/2) O(n3/2) O(n3/2/p) 

 

In Table 2.2, a best case means when there is a minimum effort 

needed for sorting an array. This is usually when the array is 

perfectly shuffled and array does not consist of increasing or 

decreasing series of adjacent numbers. A worst case is opposite 

of this. An average is in between these two. 
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Last column is just a prediction on the effort needed when sorting 

the array using the parallel version of the code written in CUDA 

language. 

3. Parallel Sorting Algorithms 

3.1. Related work 

 Parallel sorting has been considered by many researchers in the 

context of different parallel architectures. For example, general 

organization of some of the basic sorting algorithms for 

multithreading is considered in [6]. A parallel bucket-sort 

algorithm is presented in [7] that requires time O(log n) and the 

use of n processors. A pipelined insertion sort for sorting n 

numbers with n processes using MPI is given in [8]. In the same 

article, an inherently parallel sorting method, bitonic sort is 

discussed which can be effectively implemented in shared 

memory architectures. 

For the GPUs, efficient strategies for parallel radix sorting on 

GPUs were discussed in [9]. In a technical report by NVIDIA 

Corporation [10], radix sort and merge sort algorithms are 

implemented in multicore GPUs using the CUDA language. It is 

claimed that the merge sort is the fastest published comparison-

based GPU sort and is also competitive with multi-core routines. 

This study is an attempt to implement the five well-known sorting 

algorithms mentioned above in multicore GPUs and try to 

identify the challenges and barriers in using GPUs. The paper is 

not to provide the fastest implementation but to lay out the basics 

of GPU processing in terms of some of the sorting algorithms. 

3.2. GPU Architecture  

A CUDA program consists of phases which one or more of these 

phases are run on the CPU or GPU [11]. In CUDA, data parallel 

part of the code called a kernel. A kernel may consist of device 

functions and their structures that run on the GPU. All CUDA 

code is compiled with the CUDA compiler and kernel code 

typically generate a large number of threads (e.g. 10,000) to 

compute. That can be achieved because GPU threads are 

considered very light weight compared to CPU threads, when 

clock cycles to generate and schedule these threads are the 

subject which, GPUs have special hardware to support that [11].  

When a program is executed, kernel code execution is deferred to 

GPU where large numbers of threads are generated to execute the 

code in parallel. 

Fig. 3.2 [11] shows the CUDA thread model for consecutive runs 

of CUDA kernel and serial code; on the GPU and on the CPU 

respectively. The concept of CUDA programming model is to 

generate thousands of threads that perform in a Single Program 

Multiple Data (SPMD) manner, each on a small chunk of data in 

parallel [11]. In the figure the waiving single arrow displays the 

main thread that is common for all programs and many of those 

arrows together in the Grid0 box displays; the GPU code is 

handled with many threads at a time unlike the single main thread 

the serial code has. 

 

Figure 1 CUDA thread model [11] 

3.3. Usage of PyCUDA 

In this study, an open source Python library called PyCUDA [12] 

is used. 

1) CUDA language: CUDA makes available the general purpose 

computation (GPGPU) via using GPUs. An actual task of these 

processors is making graphics processing but they can also be 

accessed on Nvidia devices with CUDA kernels for GPGPU. In 

this paper, CUDA 6.5 version is utilized for computational 

purposes. 

2) Python: Python has many community made library extensions. 

This study incorporates pyCUDA, matodlib, and numpy libraries. 

4. Implementation Details 

This section details some of the issues concerning the 

implementation of the sorting algorithms mentioned above. 

First of all, multi-core GPU architecture is very well suited for 

data-parallel computations. Then, all of the sorting methods 

considered in this study provide data level parallelism. In other 

words, array to be sorted is practically decomposed into subarrays 

and using multithreading approach each subarray(s) is sorted by 

the GPUs and the results are reduced and gathered to the main 

thread.  

Algorithm 1 and 2 show the pseudo codes for the Bubble sort for 

a standard architecture and Nvidia CUDA kernel code 

respectively. This code is in the most general form for the sorting 

algorithms used in this study. 

____________________________________________________ 

Algorithm 1 Pseudo code for sequential Bubble sort 

____________________________________________________ 

1: FOR passnum BETWEEN LengthOf(array) AND 0 

2:    FOR i BETWEEN 0 AND passnum 

3:       IF (array[ ith_element] > array [i+1_th_element]) 

4:         SWAP(array[ ith_element] WITH array [i+1_th_element]) 

5:       ENDIF 

6:    ENDFOR 

7:  ENDFOR 

____________________________________________________ 

Algorithm 2 Pseudo code for parallel Bubble sort 

____________________________________________________ 

1: idx = thread_id, N = length_of(array)-1 

2: FOR i = idx BETWEEN 0 AND N 

3:    FOR j BETWEEN 0 AND N-1-i 

4:       IF (array[ j ] > array [ j+1 ]) 

5:         SWAP(array[ j ] WITH array [ j+1 ]) 

6:       ENDIF 

7:    ENDFOR 

8:  ENDFOR 
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In the first line of Algorithm 2, variable idx is associated with 

thread_id, which means that for each run of the kernel, the thread 

number will be unique. This line is necessary for the correct 

computation as well as the parallelization of the code, otherwise 

code will run sequentially. Then, variable N equals to the length 

of input array. The second line starts with for loop each thread_id 

associated with the loop variable i, then an inner loop iterates the 

compare and swap array indexes for each pass of the outer FOR 

loop. The fourth line compares the elements of the array pairwise, 

and if any pair happens to be in descending order, then is 

swapped, in order to place the elements in ascending order. 

Notice here that the CUDA code is quite similar to the sequential 

one. This is necessary because llvm compiler is a C language-

based compiler and the default optimization parameter value is –

O2. If one tries to alter the code, as such changing the “for loops” 

with “if” clauses, then all algorithms will be nearly the same 

algorithm, causing the llvm compiler produces nearly the same 

machine code. That means, the algorithm of the code is altered in 

such a way that it does not reflect the actual behaviour. 

4.1. Sequential Results 

An environment using the latest Ubuntu OS is set up, and all the 

programs are present in the built-in repositories.   

For a test bed, “numpy” was used to generate arrays increasing in 

size, all holding floating point numbers. The sequential version of 

algorithms executed using CPU with these arrays generating run 

times, as shown in Fig. 3 below. 

The average run time for all algorithms, omitting the times with 

512 elements, is 0.00015 seconds, that is 150μs (microseconds). 

The measured runtimes are remarkably small and as expected, 

quicksort seems to the winner among all especially with large 

size arrays. 

The logarithmic scale is used, so bars looking downwards are 

showing values between 1 second and 1μs, and they are non-

negative. The bars above horizontal line are between 1 second 

and 100 seconds. 

In addition, bubble sort, insertion sort and selection sort has run 

times all exceeding 100 seconds. This is expected, because 

computational complexities for these algorithms are O(n2) on the 

average. 

 

 

 

 

 

 

 

5. Comparison of the timing values 

The timing values for sequential algorithms are in Fig. 3 and 

parallel counterfeits are in Fig. 2. From these charts it is very 

clear that CUDA language does what it promises and it gives an 

advantage in terms of execution times when compared to the 

sequential counterfeits. Even when considering the quicksort 

algorithm, where all sequential code execution times are under 1 

seconds, the speed-up achieved with its parallel version is 333x 

times the sequential code. 

The results clearly show the CUDA can achieve great speed-ups 

over sequential code. However this paper was intended for 

academic work, and we use Python language, which is a JIT (just 

in time) interpreted language. If we also remember that the 

sequential code fails to execute with 32,536 elements, there might 

be some problem with the Python compiler used, although 

pyCUDA code always compiles with CUDA “llvm”, and is not 

affected by the Python compiler. So we leave this to readers’ 

choice to seek after if Python code can run a little faster. 

 

 
Table 2.  Sequential results vs. parallel timing predictions and speed-

ups in seconds 

Arr_size 
Bubble 

sort 
tp 

Sup 

Bubble 

Quick 

sort 
tp 

Sup 

Quick 

512 0.08 0.8x10-4 142 0.003 0.3x10-5 5 

1,024 0.3 0.3x10-3 314 0.005 0.5x10-5 45 

2,048 1.1 0.1x10-2 1100 0.01 0.1x10-4 81 

4,096 4.5 0.4x10-2 3753 0.02 0.2x10-4 178 

8,192 18 0.2x10-1 7561 0.05 0.5x10-4 341 

32,536 240 0.3x100 11420 0.2 0.2x10-3 1342 

 

Table 2 above shows the timing values in seconds for sequential 

bubble sort and quick sort algorithms. The column with heading 

tp, represents the predicted parallel timing values according to the 

formula; tp=ts/p, where ts is the time for the sequential execution 

and p is the total number of treads utilized. In Table 2 above, 

thread count was kept constant at 1,024 threads, for all array 

sizes. 

By looking at this table it is not unexpected that the quicksort and 

shell sort are the only two algorithms that can execute over 

30,000 elements, in competitive times, because the theory implies 

that these algorithms are more efficient to execute when running 

with a single thread or process in terms of time and 

computational space (i.e. memory). The parallel versions, does 

not seem to show any sign of change in behaviour, when 

Figure 2 Execution times for sequential code 
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executed with different element sizes. This may be due to 

architecture of GPU and CUDA, which involves expensive 

memory operations in terms of time. Hence, to obtain maximum 

efficiency from CUDA, the array sizes must be a very large 

value, e.g. millions. Then CUDA timings of the parallel 

algorithms would be according to the complexities that of serial 

timings.   

If one compares the tp, values column to parallel results graph 

(i.e. Fig 2) than it is clear that tp values are almost identical for 

small array sizes and 10x slower when compared to large arrays. 

This is quite easy to explain, the difference is due two different 

devices that are used to find the results, the CPU and GPU. And, 

there is currently no way in CUDA for running a kernel code on 

GPU in sequential. The 10x extra speed-up is achieved when we 

compare the theoretical tp values to actual parallel code timings. 

This can be explained as GPU(s) having nearly or over 20x 

speed-ups compared to CPU(s), especially when large data sizes 

are considered. 

Moreover, Sup-Bubble and Sup-Quick columns represent the 

speed-ups achieved for timing values of serial execution versus 

parallel executions for bubble sort and quick sort, respectively. 

Where, Sup = tserial/tparallel, where tserial is execution time for 

serial execution, and tparallel is execution time for parallel code. 

6. Discussions 

Python language is used on purpose because Python’s numpy 

library is very powerful at array operations. Furthermore Python 

has many more extensions that are community maintained, 

making it superior to coding in plain C/C++ where the coder has 

to generate every piece of code from scratch. 

Results found show that there is almost no difference in running 

times for parallel versions, but this is mainly because parallel 

languages are all designed for very large array sizes. This 

performance can be hardly achieved with the sequential code.  

Also, Intel 2nd generation i7 4-core CPU and Nvidia GT540m 

GPU is used for this experiment, where both has certain 

limitations. A different test with more powerful hardware can 

achieve larger array values, to reflect the computational 

complexity for timing and computational space much better.  

In other words, this was the limitation for the hardware used. 

And, with a GPU with more memory space one expects reduction 

in the execution times of the algorithms, especially with larger 

array sizes, which is also depicted by the corresponding 

theoretical complexity bounds given earlier. 

7. Conclusions 

In this paper, the results prove there is significant amount of 

speed-up can be achieved when using CUDA instead of a 

sequential code. As the results indicate, the sequential sorting 

algorithms organized for GPUs, can provide high performance 

results without even substantially changing the sequential codes. 

However, to get the most out of the GPU processing power, one 

has to redesign the algorithms to match with the underlying 

parallel architecture of the graphics cards (GPUs). 
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