

International Journal of

Applied Mathematics,

Electronics and Computers

Advanced Technology and Science

ISSN: 2147-82282147-6799 http://ijamec.atscience.org Original Research Paper

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(3), 74–77 | 74

Implementation of Sorting Algorithms with CUDA: An Empirical Study

Ali Yazici *1, Hakan Gokahmetoglu 2

Accepted 6th December 2015 DOI: 10.18100/ijamec.53457

Abstract: Sorting algorithms have been studied for more than 3 decades now. The aim of this paper is to implement some of the sorting

algorithms using the CUDA language in a GPU environment provided by the Nvidia graphics cards. This empirical study is done for

comparing the performance of the sorting algorithms in a run-time environment provided by the GPUs and the CUDA programming

language. This study considers the implementation of bubble sort, insertion sort, quicksort, selection sort and shell sort algorithms. It is

shown in this article that there is a significant amount of speed-up in using CUDA and the Nvidia architecture instead of a sequential

code running on standard architectures.

Keywords: CUDA, sorting algorithms, GPGPU programming, parallel sorting.

1. Introduction

CUDA programming language [1] is first introduced in 2008 by

Nvidia, to run parallel computations on Nvidia devices, then

Graphical Processing Units (GPUs), later accelerator devices

from Nvidia only added to CUDA programming. Although,

Message-Passing Interface (MPI) [2] library is used for massively

parallel and cluster systems, it does not deliver any performance

to a single PC. Hence, in this paper, it is decided to conduct an

empirical study to illustrate how the graphics cards provided by

Nvidia and the use of CUDA language can improve the

computation times for sorting algorithms.

Theoretically, a SM 2.0 CUDA capable GPU can execute 1024

threads at a compute cycle [3]. That is equivalent of 1024 CPU

cores, when doing a data-level computation in parallel, e.g.

simple arithmetic operations.

Finally, wall clock values are compared using the increasing

output sizes for each sorting algorithm. By doing so, we believe,

one can compare the theoretical execution time values to actual

results, and decide if CUDA accelerates the execution times for

the algorithms designed sequential effectiveness in mind.

Next section gives an overview of sorting algorithms for classical

computer architectures. Section 3 surveys some of the parallel

sorting algorithms relevant to this study. In Section 4

implementation of the aforementioned sorting algorithms using

the CUDA programming language and the GPUs are discussed.

In Section 5 test results are given in a comparative manner.

Section 6 and 7 are devoted to discussions and conclusions.

2. Sequential Sorting Algorithms

2.1. An overview

Sorting algorithms [4] are generally used for ordering elements in

an array. The most conventional way is using alphanumerical

ordering, and then the resulting sorted array can be used for

merging and searching algorithms. Another use of sorting is

increasing the human readability of an output.

Five sequential sorting algorithms with different computational

complexities are considered, namely, bubble sort, selection sort,

insertion sort, quicksort and shell sort.

Bubble and quicksort are types of exchange sorts where elements

in the array are compared pairwise and interchanging the

elements only if necessary. Selection sort is a type of selection

sorts where an extreme value (e.g. a maximum or a minimum) is

chosen and then sorting is done once according to that item. After

that many selection operations are made for finalizing the sorting

the array. Insertion and Shell sorts are types of insertion sorts

where final sorted array (or list) is build one by one, i.e. moving

each element of the array in to desirable position until the list is

completely sorted in the desired order.

The CUDA implementations of algorithms such as merge sort,

distribution sorts or hybrid sort will be considered in a separate

study.

2.2. Computational Complexities

Computational complexity [5] is a theory which is about relating

the computational steps to execute a code that does some

arithmetic operations, with the measuring of these steps done

according to the time and memory space taken on a particular

machine. Then big-O notation can be used to associate the

complexities to time values and compare among the different

algorithms.

Generally speaking, sorting algorithms have computational

complexities between O(n) and O(n2). Table 1 below summarizes

the computational complexities of the sorting algorithm in

question using the big-O notation.

Table 1. Theoretical complexity values for sequential algorithm

Sorting

Algorithm
Best case Avg. case

Worst

case

Parallel

prediction –
p=#of treads

Bubble O(n) O(n2) O(n2) O(n2/p)

Insertion O(n) O(n2) O(n2) O(n2/p)

Quick O(nlogn) O(nlogn) O(n2) O(nlogn/p)

Selection O(n2) O(n2) O(n2) O(n2/p)

Shell O(n) O(n3/2) O(n3/2) O(n3/2/p)

In Table 2.2, a best case means when there is a minimum effort

needed for sorting an array. This is usually when the array is

perfectly shuffled and array does not consist of increasing or

decreasing series of adjacent numbers. A worst case is opposite

of this. An average is in between these two.

1 Software Engineering, Atilim University Ankara, Turkey

* Corresponding Author: Email: ali.yazici@atilim.edu.tr

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(3), 74–77 | 75

Last column is just a prediction on the effort needed when sorting

the array using the parallel version of the code written in CUDA

language.

3. Parallel Sorting Algorithms

3.1. Related work

 Parallel sorting has been considered by many researchers in the

context of different parallel architectures. For example, general

organization of some of the basic sorting algorithms for

multithreading is considered in [6]. A parallel bucket-sort

algorithm is presented in [7] that requires time O(log n) and the

use of n processors. A pipelined insertion sort for sorting n

numbers with n processes using MPI is given in [8]. In the same

article, an inherently parallel sorting method, bitonic sort is

discussed which can be effectively implemented in shared

memory architectures.

For the GPUs, efficient strategies for parallel radix sorting on

GPUs were discussed in [9]. In a technical report by NVIDIA

Corporation [10], radix sort and merge sort algorithms are

implemented in multicore GPUs using the CUDA language. It is

claimed that the merge sort is the fastest published comparison-

based GPU sort and is also competitive with multi-core routines.

This study is an attempt to implement the five well-known sorting

algorithms mentioned above in multicore GPUs and try to

identify the challenges and barriers in using GPUs. The paper is

not to provide the fastest implementation but to lay out the basics

of GPU processing in terms of some of the sorting algorithms.

3.2. GPU Architecture

A CUDA program consists of phases which one or more of these

phases are run on the CPU or GPU [11]. In CUDA, data parallel

part of the code called a kernel. A kernel may consist of device

functions and their structures that run on the GPU. All CUDA

code is compiled with the CUDA compiler and kernel code

typically generate a large number of threads (e.g. 10,000) to

compute. That can be achieved because GPU threads are

considered very light weight compared to CPU threads, when

clock cycles to generate and schedule these threads are the

subject which, GPUs have special hardware to support that [11].

When a program is executed, kernel code execution is deferred to

GPU where large numbers of threads are generated to execute the

code in parallel.

Fig. 3.2 [11] shows the CUDA thread model for consecutive runs

of CUDA kernel and serial code; on the GPU and on the CPU

respectively. The concept of CUDA programming model is to

generate thousands of threads that perform in a Single Program

Multiple Data (SPMD) manner, each on a small chunk of data in

parallel [11]. In the figure the waiving single arrow displays the

main thread that is common for all programs and many of those

arrows together in the Grid0 box displays; the GPU code is

handled with many threads at a time unlike the single main thread

the serial code has.

Figure 1 CUDA thread model [11]

3.3. Usage of PyCUDA

In this study, an open source Python library called PyCUDA [12]

is used.

1) CUDA language: CUDA makes available the general purpose

computation (GPGPU) via using GPUs. An actual task of these

processors is making graphics processing but they can also be

accessed on Nvidia devices with CUDA kernels for GPGPU. In

this paper, CUDA 6.5 version is utilized for computational

purposes.

2) Python: Python has many community made library extensions.

This study incorporates pyCUDA, matodlib, and numpy libraries.

4. Implementation Details

This section details some of the issues concerning the

implementation of the sorting algorithms mentioned above.

First of all, multi-core GPU architecture is very well suited for

data-parallel computations. Then, all of the sorting methods

considered in this study provide data level parallelism. In other

words, array to be sorted is practically decomposed into subarrays

and using multithreading approach each subarray(s) is sorted by

the GPUs and the results are reduced and gathered to the main

thread.

Algorithm 1 and 2 show the pseudo codes for the Bubble sort for

a standard architecture and Nvidia CUDA kernel code

respectively. This code is in the most general form for the sorting

algorithms used in this study.

__

Algorithm 1 Pseudo code for sequential Bubble sort

__

1: FOR passnum BETWEEN LengthOf(array) AND 0

2: FOR i BETWEEN 0 AND passnum

3: IF (array[ith_element] > array [i+1_th_element])

4: SWAP(array[ith_element] WITH array [i+1_th_element])

5: ENDIF

6: ENDFOR

7: ENDFOR

__

Algorithm 2 Pseudo code for parallel Bubble sort

__

1: idx = thread_id, N = length_of(array)-1

2: FOR i = idx BETWEEN 0 AND N

3: FOR j BETWEEN 0 AND N-1-i

4: IF (array[j] > array [j+1])

5: SWAP(array[j] WITH array [j+1])

6: ENDIF

7: ENDFOR

8: ENDFOR

76 | IJAMEC, 2016, 4(3), 74-77 This journal is © Advanced Technology & Science 2013

In the first line of Algorithm 2, variable idx is associated with

thread_id, which means that for each run of the kernel, the thread

number will be unique. This line is necessary for the correct

computation as well as the parallelization of the code, otherwise

code will run sequentially. Then, variable N equals to the length

of input array. The second line starts with for loop each thread_id

associated with the loop variable i, then an inner loop iterates the

compare and swap array indexes for each pass of the outer FOR

loop. The fourth line compares the elements of the array pairwise,

and if any pair happens to be in descending order, then is

swapped, in order to place the elements in ascending order.

Notice here that the CUDA code is quite similar to the sequential

one. This is necessary because llvm compiler is a C language-

based compiler and the default optimization parameter value is –

O2. If one tries to alter the code, as such changing the “for loops”

with “if” clauses, then all algorithms will be nearly the same

algorithm, causing the llvm compiler produces nearly the same

machine code. That means, the algorithm of the code is altered in

such a way that it does not reflect the actual behaviour.

4.1. Sequential Results

An environment using the latest Ubuntu OS is set up, and all the

programs are present in the built-in repositories.

For a test bed, “numpy” was used to generate arrays increasing in

size, all holding floating point numbers. The sequential version of

algorithms executed using CPU with these arrays generating run

times, as shown in Fig. 3 below.

The average run time for all algorithms, omitting the times with

512 elements, is 0.00015 seconds, that is 150μs (microseconds).

The measured runtimes are remarkably small and as expected,

quicksort seems to the winner among all especially with large

size arrays.

The logarithmic scale is used, so bars looking downwards are

showing values between 1 second and 1μs, and they are non-

negative. The bars above horizontal line are between 1 second

and 100 seconds.

In addition, bubble sort, insertion sort and selection sort has run

times all exceeding 100 seconds. This is expected, because

computational complexities for these algorithms are O(n2) on the

average.

5. Comparison of the timing values

The timing values for sequential algorithms are in Fig. 3 and

parallel counterfeits are in Fig. 2. From these charts it is very

clear that CUDA language does what it promises and it gives an

advantage in terms of execution times when compared to the

sequential counterfeits. Even when considering the quicksort

algorithm, where all sequential code execution times are under 1

seconds, the speed-up achieved with its parallel version is 333x

times the sequential code.

The results clearly show the CUDA can achieve great speed-ups

over sequential code. However this paper was intended for

academic work, and we use Python language, which is a JIT (just

in time) interpreted language. If we also remember that the

sequential code fails to execute with 32,536 elements, there might

be some problem with the Python compiler used, although

pyCUDA code always compiles with CUDA “llvm”, and is not

affected by the Python compiler. So we leave this to readers’

choice to seek after if Python code can run a little faster.

Table 2. Sequential results vs. parallel timing predictions and speed-

ups in seconds

Arr_size
Bubble

sort
tp

Sup

Bubble

Quick

sort
tp

Sup

Quick

512 0.08 0.8x10-4 142 0.003 0.3x10-5 5

1,024 0.3 0.3x10-3 314 0.005 0.5x10-5 45

2,048 1.1 0.1x10-2 1100 0.01 0.1x10-4 81

4,096 4.5 0.4x10-2 3753 0.02 0.2x10-4 178

8,192 18 0.2x10-1 7561 0.05 0.5x10-4 341

32,536 240 0.3x100 11420 0.2 0.2x10-3 1342

Table 2 above shows the timing values in seconds for sequential

bubble sort and quick sort algorithms. The column with heading

tp, represents the predicted parallel timing values according to the

formula; tp=ts/p, where ts is the time for the sequential execution

and p is the total number of treads utilized. In Table 2 above,

thread count was kept constant at 1,024 threads, for all array

sizes.

By looking at this table it is not unexpected that the quicksort and

shell sort are the only two algorithms that can execute over

30,000 elements, in competitive times, because the theory implies

that these algorithms are more efficient to execute when running

with a single thread or process in terms of time and

computational space (i.e. memory). The parallel versions, does

not seem to show any sign of change in behaviour, when

Figure 2 Execution times for sequential code

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(3), 74–77 | 77

executed with different element sizes. This may be due to

architecture of GPU and CUDA, which involves expensive

memory operations in terms of time. Hence, to obtain maximum

efficiency from CUDA, the array sizes must be a very large

value, e.g. millions. Then CUDA timings of the parallel

algorithms would be according to the complexities that of serial

timings.

If one compares the tp, values column to parallel results graph

(i.e. Fig 2) than it is clear that tp values are almost identical for

small array sizes and 10x slower when compared to large arrays.

This is quite easy to explain, the difference is due two different

devices that are used to find the results, the CPU and GPU. And,

there is currently no way in CUDA for running a kernel code on

GPU in sequential. The 10x extra speed-up is achieved when we

compare the theoretical tp values to actual parallel code timings.

This can be explained as GPU(s) having nearly or over 20x

speed-ups compared to CPU(s), especially when large data sizes

are considered.

Moreover, Sup-Bubble and Sup-Quick columns represent the

speed-ups achieved for timing values of serial execution versus

parallel executions for bubble sort and quick sort, respectively.

Where, Sup = tserial/tparallel, where tserial is execution time for

serial execution, and tparallel is execution time for parallel code.

6. Discussions

Python language is used on purpose because Python’s numpy

library is very powerful at array operations. Furthermore Python

has many more extensions that are community maintained,

making it superior to coding in plain C/C++ where the coder has

to generate every piece of code from scratch.

Results found show that there is almost no difference in running

times for parallel versions, but this is mainly because parallel

languages are all designed for very large array sizes. This

performance can be hardly achieved with the sequential code.

Also, Intel 2nd generation i7 4-core CPU and Nvidia GT540m

GPU is used for this experiment, where both has certain

limitations. A different test with more powerful hardware can

achieve larger array values, to reflect the computational

complexity for timing and computational space much better.

In other words, this was the limitation for the hardware used.

And, with a GPU with more memory space one expects reduction

in the execution times of the algorithms, especially with larger

array sizes, which is also depicted by the corresponding

theoretical complexity bounds given earlier.

7. Conclusions

In this paper, the results prove there is significant amount of

speed-up can be achieved when using CUDA instead of a

sequential code. As the results indicate, the sequential sorting

algorithms organized for GPUs, can provide high performance

results without even substantially changing the sequential codes.

However, to get the most out of the GPU processing power, one

has to redesign the algorithms to match with the underlying

parallel architecture of the graphics cards (GPUs).

Acknowledgements

This study is supported by Atılım University and founded by the

Atılım Universtiy scholarship program for graduates. This study

is presented in ICAT’15 conference.

References

[1] S. Cook, CUDA Programming: A Developer's Guide to

Parallel Computing with GPUs (Applications of Gpu

Computing), 1st. ed., Morgan Kaufmann, 2012

[2] P. Pacheco, Introduction to Parallel Programming, Morgan

Kaufmann, 2012

[3] N. Wildt, The CUDA Handbook, A Comprehensive Guide

to GPU Programming, Pearson Education, 2013

[4] J. Edosomwan, Sorting Algorithm, LAP Lambert Academic

Publishing, 2012

[5] S. Arora and B. Barak, Computational Complexity: A

Modern Approach, 1st. ed., Cambridge University Press,

2009

[6] M. Dawra and P. Dawra, IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012

[7] D. S. Hirschberg, Communications of ACM, 21(8), 1978

[8] B. Wilkinson and M. Allen, Parallel Programming:

Techniques and Applications Using Networked

Workstations and Parallel Computers, 2nd. ed., Pearson

Education, 2005.

[9] D. Merrill and A. Grimshaw, Revisiting Sorting for

GPGPU Stream Architectures, Technical Report CS2010-

03, Department of Computer Science, University of

Virginia. February 2010.

[10] N. Satish, M. Harris and M. Garland, Designing Efficient

Sorting Algorithms for Manycore GPUs, NVIDIA

Technical Report NVR-2008-001, Sep. 2008., NVIDIA

Corporation.

[11] D. B. Kirk and Wen-mei W. Hwu, Programming Massively

Parallel Processors: A Hands-On Approach (1st ed.).

Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2010

[12] (2014) http://mathema.tician.de/software/pyCUDA/

