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 Karst Rocky Desertification (KRD) is the reduction of vegetative productivity of this land with 
the release of bedrock as a result of the full or partial transportation of the fertile soil through 
natural processes and human activities in karst landscapes. The purpose of this study is to 
reveal the effectiveness of Remote Sensing methods in monitoring, mapping and evaluating 
KRD. Landsat 8 OLI images were used to carry out these procedures. In monitoring this 
process, Karst Bare Rock Index (KBRI), Normalized Difference Rock Index (NDRI), Carbonate 
Rock Index 2 (CRI2), Normalized Difference Build-Up Index (NDBI), Normalized Difference 
Vegetation Index (NDVI), Dimidiate Pixel Model (DPM), Multi Endmember Spectral Mixture 
Analysis (MESMA) and Support Vector Machine (SVM) were used from the spectral indices. In 
order to determine KRD with spectral indexes, a strong linear relationship was tested between 
some indices such as DPM (R2=0,79), KBRI (R2=0,66), and NDBI (R2=0,64) and field 
measurements. In order to evaluate the results obtained, KRD was divided into 4 basic classes 
such as none, mild, moderate, and severe. According to these classification levels, it was 
determined that the SVM method had the highest accuracy (Kappa=0.88). According to the 
classification results, which have the highest accuracy in the study area, the rate of areas 
undergoing severe karst desertification is 40%, moderate desertification process is 17%, mild 
desertification is 14% and non-desertification is 29%. In the study, it was concluded that the 
KRD strengthens as one goes from south to north and from west to east in the research area. 
This study points out KRD is one of the effective ecosystem problems in the Mediterranean 
region, Türkiye. 
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1. Introduction  
 

The concept of karst is defined as the process of 
dissolution and deposition realized on carbonates, 
evaporates and halite with water [1]. This term 
essentially explains the shapes that are created by the 
melting of soluble rocks and passing underground 
through surface streams [2]. The term karst has been 
associated with the world of science with the German 
pronunciation of the name of a region between Italy and 
Slovenia, which is called Carso in Italian and Kras in 
Slovenian [1]. Karst landscapes are characterized by 
landforms such as dolines, caves, collapsed sinkholes and 
carbonate deposits that develop on carbonate rocks 
(limestone, dolomite, marble) or evaporites (gypsum, 
anhydrite, rock salt) [2,3]. 

The total area of karst landscapes around the world 
is approximately 22 million km2 which accounts for 
approximately 12% of the lithosphere [4,5]. Karst 
landscapes with heterogeneous and complex land cover, 
are among the different types of surfaces that make up 
the lithosphere, are widespread in Türkiye as well as in 
several parts of the world. Considering the spread of 
karst landscapes in Türkiye, it is known that these areas 
correspond to approximately one third of the total area 
of the country [6].  

Karst regions have sensitive ecological 
characteristics due to geological structures [7]. In karst 
landscapes, fragmented plant communities that develop 
on discontinuous soil cover are generally encountered 
[8]. For this reason, when damage to the soil and 
vegetation in Karst regions cannot be tolerated in the 
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short term, the ecosystem in these regions suffers [9]. 
One of the most important problems that arise in the 
ecosystem in karst landscapes is the exposure of the 
bedrock after the soil cover has been removed due to the 
destruction of vegetation as a result of natural processes 
or human effects [10]. This process, which is defined as 
Karst Rocky Desertification (KRD) in the literature, 
actually refers to land degradation in karst landscapes in 
its simplest terms [4,10]. KRD, which means the 
reduction of soil cover due to deforestation and erosion 
in karst lands, is a term used to express a land 
degradation process [11]. According to the explanations 
in the literature, the erosion of the soil due to human 
activities such as crop production, animal grazing, 
extreme climatic events, and changes in land functions 
are the leading causes that accelerate KRD [12, 13, 7]. The 
negative effects caused by KRD are both environmental 
and economic problems such as landslides, floods and 
erosion [14]. The rapid development of many 
environmental problems in areas where KRD is effective 
is important in terms of identifying regions where this 
process has developed and controlling it by monitoring. 

Vegetation cover, exposed bedrock and soil depth 
are used in expressing or classifying the degree of 
degradation of the land during the KRD process [11].  
However, there is no standard approach to the 
classification of surfaces on which this problem is 
effective as regards monitoring, mapping or evaluation of 
KRD (Table 1). For example, in the study conducted by 
Yang et al. [13], the regions where the open rock surface 
is more than 70% in terms of KRD classification were 
stated as very severe desertification areas. On the other 
hand, the same surfaces were marked as areas with 
severe KRD in the study conducted by Bai et al. [15] 
(Table 1). Moreover, areas with an Exposed Bedrock Rate 
(EBR) of less than 30% were stated by Jiang et al. [4] as 
no desertification, while Bai et al. [15] categorized these 
areas into two groups as non-desertification or potential 
desertification areas (Table 1). In this study, the class 
intervals used by Jiang et al. [4] were preferred in the 
classification of KRD. Because of this complexity, a new 
classification approach was used in this study, in which 
the exposed rock rate and soil depth were evaluated 
together. 
 

 
Table 1. Classification of exposed bedrock rate (EBR) in different KRD studies 

Classification of Karst Rocky Desertification EBR (Bai, et al. [15]) EBR (Jiang et al. [4]) EBR (Yang et al. [13]) 
No-Desertification <%20 <30% <10% 

Potential 21%- 30% - - 
Mild 31%- 50% 30%- 50% 10%- 30% 

Moderete 51%- 70% 50%- 70% 30%- 50% 
Severe 71%- 90% > 70% 50%- 70% 

Very Severe > 91% - > 70% 

 
In recent years, remote sensing (RS) methods have 

replaced labor-intensive and costly traditional methods 
in monitoring KRD [14,16]. RS methods provide low-cost 
data collection, wide area coverage and spatial continuity 
[8].  

In the literature, normalized difference spectral 
indices are the most popular practices for ecological 
planning that are often used for the detection of Land 
Use/Land Cover Change and Land Surface Temperature 
studies which are based on similar conditions to occur 
KRD [17]. Monitoring, mapping and grading of KRD with 
RS methods are basically based on determining the land 
exposure rate (Exposed Bedrock Rate) and vegetation 
cover rate [18]. Visual interpretation and computer-
aided image processing were emphasized in the first 
studies to detect KRD with the help of satellite images 
[14]. The advantage of spectral indices over other 
methods is that they give fast results in monitoring KRD 
in large areas without classification [14]. In some studies, 
the best performing indices that gave good results for 
monitoring KRD were retrieved by spectral unmixing to 
obtain more effective results on the image in mapping 
KRD [5]. One of the methods with high accuracy rates in 
determining the KRD is the support vector machine 
method [19]. Sub-pixel modeling and machine learning 
methods (such as Support Vector Machine, Random 
Forest) were also used to distinguish bare karst surfaces 
and covered areas in complex areas [7]. SVM, which is 
used in the classification of karst rock desertification, has 
been used successfully in different classification 

applications and in solving pattern recognition problems 
[20, 21]. 

Various indices, mixture analysis and machine 
learning methods have been used for monitoring KRD at 
the regional or local level [16]. The aim of this study is to 
determine the spectral indices and classification method 
that gives the best results in KRD monitoring and to 
prove the areas where karst rock desertification is 
intense in the study area. Moreover, this study compares 
whether classified spectral indices or different 
classification practices are more effective in mapping 
KRD. For this purpose, firstly statistical linear 
relationships between spectral indices revealing karst 
rocky desertification and field measurements (In-Situ 
investigation) of karst rocky desertification were tested 
in the study area.  Afterward, the accuracy rates of the 
spectral indices which were classified according to the 
index values and directly applied classification 
approaches such as machine learning methods were 
calculated. In addition, examining the human activities 
that accelerate this problem in the study area is another 
subject to be clarified. The research questions to be 
answered in line with these purposes: Is there a 
statistically significant relation between the spectral 
indices and the rate of exposed bedrock? What are the 
most effective methods for the classification of Karst 
Rocky Desertification in the Mediterranean region of 
Türkiye? How did the relations between karst landscapes 
and human activities develop in the study area within the 
scope of desertification? 
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2. Method 
 

2.1. Study area 
 

Aksu Stream Basin is a good example of an area 
where the Mediterranean climate is effective and 
karstification is common. A large part of the research 
area is located on the Taurus Mountains mass, which is 
one of the biggest karst landscapes of Türkiye [22]. The 
Aksu Stream Basin is located between 36-38° north 
latitudes and 30-31° east longitudes based on its 
mathematical location (Figure 1). 
 

 
Figure 1. The location of research area and distribution 

of sample points 
 

Gölcük Lake Basin was not included in the research 
boundaries as a result of which the boundaries of the 
research area were determined as 6850 km2. Aksu 
Stream Basin is the largest sub-basin of Antalya Basin, 
which is one of the 25 major basins of Türkiye [23].  The 
formations of the land in the Aksu Stream Basin and its 
immediate surroundings present quite different 
spreading areas and lithological features. Limestone, 
which is very important in the formation of the KRD, 
dominates the study area. Limestone generally consists 
of units stratified in different formations of Triassic, 
Jurassic and Cretaceous ages [24]. Karst structures have 
been shown in the calcareous units indicating a suitable 
environment for the progress of the KRD in the study 
area. 

Another factor affecting vegetation distribution in 
terms of KRD is climate. It is not feasible to reach a 
conclusion that a typical Mediterranean Climate is 
effective in the entire Aksu Stream Basin. Considering the 
monthly temperature values, it is known that the annual 
average temperature in the Western Mediterranean 
Region is 12.1-12.6 °C in the high regions, the sea impact 
is effective, and it is in the range of 12.7-13.9 °C in low 
altitude areas [25]. In the Aksu Stream Basin, the winter 
season is generally very rainy and humid, the summers 
are hot and dry, the spring is unstable in terms of 
precipitation, and the autumn season gains a character 
similar to the winter season [26]. 
 

2.2. Data  
 

Landsat 8 OLI images presented by the United States 
Geological Survey (http://usgs.com) were used in this 
study, in which RS methods were employed for 
monitoring KRD. Landsat 8 satellite was launched by the 
National Aeronautics and Space Administration on 
February 11, 2013 with the addition of OLI and a 
Thermal Infrared sensor [17]. Later, it was transferred to 
USGS for routine imaging operations [27]. In the 
selection of images representing the study area, attention 
was paid to witness that the vegetation period has ended 
and the study area boundaries are completely cloudless 
(Table 2). In the next stages, pre-editing operations were 
performed on the images. The FLAASH (Fast Line-of-
Sight Atmospheric Analysis of Hypercubes) tool was used 
for atmospheric and radiometric arrangements. Lakes in 
vector data format and non-karst areas obtained from 
1/25000 scale geology maps created by MTA (Mining 
Technical Exploration) were excluded from the 
combined maps. 
 

 

Table 2. Landsat 8 OLI images used in the study 
Date Image ID Column Row Sun Angle Cloud Rate (%) 

1 July 2019 LC81780332019182LGN00 178 33 66.02 0.09 
1 July 2019 LC81780342019182LGN00 178 34 66.59 1 

 

One of the most important factors in determining the 
areas where KRD is effective is the exposed bedrock rate. 
In the determination of EBR, a relationship is established 
as the EBR increases as the vegetation cover rate 
decreases. The vegetation cover rate was determined by 
forest stands obtained from the General Directorate of 

Forestry with the help of fieldwork from sampling points 
(Figure 1). Parameters which contained in forest stands 
such as average stand height and their distribution are 
repeated applications [28]. Horizontal vegetation cover 
in forest stands was determined as separating vegetation 
into 10x30 or 20x20 diameters with a peak frequency 
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meter [29]. Soil depth, which is another parameter used 
in the classification of KRD, was determined with the help 
of 82 field measurements with a soil auger (Figure 2). In 
the classification of images, 50 sample points were used 
for the training process and 32 measurements were 
utilized for ground truth accuracy. 
 
 

 
Figure 2. A view from sampling with a 100cm auger to 

determine soil depth. 
 

2.3. Method 
 

The methods used in this study for monitoring KRD 
are Spectral Indices, Dimidiate Pixel Model, Multiple 
Spectral Mixture Analysis and Support Vector Machine. 
To understand how effective the spectral indices and 
sub-pixel segmentation are in monitoring KRD, the linear 
relationships between field measurements (rock ratio 
calculated using the tree cover ratio and soil depth) and 
the indices were tested with simple linear-regression 
analysis within the scope 82 sampling points (Eşitlik 1).  
 

𝑌 = 𝑎 + 𝑏. 𝑥 (1) 
 

The indices that are frequently used in KRD 
monitoring studies are: 
 
2.3.1. Karst bare-rock index (KBRI)  
 

The methods applied in KRD are mainly based on the 
principle of distinguishing vegetation, bedrock surface 
and soil surface from each other [18]. In this method, the 
spectral difference between bare rock and other types of 
land cover becomes evident in the SWIR1 (Landsat 8-OLI 
image band 6) band (Eşitlik 2). As the index results 
obtained by making use of this relationship between the 
bands approach +1 the severity of KRD increases. 
 

 KBRI=
𝑝𝑆𝑊𝐼𝑅1−𝑝𝑁𝐼𝑅

20 𝑥 √𝑝𝑆𝑊𝐼𝑅1+𝑝𝑁𝐼𝑅
 (2) 

 
2.3.2. Normalized difference rock index (NDRI) 
 

This index, derived by Huang and Cai [30] is 
calculated based on the difference between the strong 
reflection of visible radiation (band 3) and the complete 

absorption of mid-infrared wavelengths (band 5) by 
water. In this method, it is accepted that KRD increases 
when the results are negative values, and decreases 
when the results are positive (Eşitlik 3). 
 

NDRI =
𝑝𝑁𝐼𝑅 − 𝑝𝐺𝑟𝑒𝑒𝑛

𝑝𝑁𝐼𝑅 + 𝑝𝐺𝑟𝑒𝑒𝑛 
 (3) 

 
2.3.3. Carbonate rock index 2 (CRI2) 
 

This index was prepared by Xie et al. [31] based on 
the logic that blue and near infrared bands are more 
effective in reflecting the vegetation cover with soil. In 
the results obtained by means of this index, karst 
landscapes become more pronounced in areas where 
reflection values decrease (Eşitlik 4). 
 

CRI2 =
𝑝𝐵𝑙𝑢𝑒−𝑝𝑁𝐼𝑅

𝑝𝐵𝑙𝑢𝑒+𝑝𝑁𝐼𝑅 
 (4) 

 
2.3.4. Normalized difference built-up index (NDBI) 
 

NDBI is one of the indices referenced in the literature 
for determining KRD [14]. This indice was applied with 
the use of SWIR1 and NIR bands (Eşitlik 5). The results 
mean that as the areas where positive values are 
calculated with NDBI approach up to + 1, the severity of 
KRD increases. 
 

NDBI =  
𝑝𝑆𝑊𝐼𝑅1 − 𝑝𝑁𝐼𝑅

𝑝𝑆𝑊𝐼𝑅1 + 𝑝𝑁𝐼𝑅 
 (5) 

 
2.3.5. Normalized difference vegetation index 

(NDVI) 
 

NDVI is an index used to determine vegetation cover 
based on the relationship between the near infrared and 
red bands (Eşitlik 6).  these values are close to +1 means 
that there is dense vegetation in the field, while being 
close to -1 means that the leaves lose their vitality or the 
vegetation is sparse [32]. In a region where NDVI shows 
negative values mean desertification has increased 
whereas the positive values are not observed below 0.2 
[33]. 
 

NDVI =
𝑝𝑁𝐼𝑅 − 𝑝𝑅𝑒𝑑

𝑝𝑁𝐼𝑅 + 𝑝𝑅𝑒𝑑 
 (6) 

 
Another method preferred in KRD monitoring is 

Dimidiate Pixel Model. This model is generally used for 
the calculation of Fractional Vegetation Cover [7]. This 
method is defined as the rate of vertical coverage of the 
vegetation cover with its projection on the ground 
surface. Other methods are MESMA and SVM Methods 
which show the highest accuracy in the literature.  
 
2.3.6. Dimidiate pixel model (DPM) 
 

This model is generally used to calculate fractional 
vegetation [19]. This method is defined as the rate of the 
vertical coverage of vegetation to its projection on the 
ground surface. The Dimidiate Pixel Model used to 
determine Fractional Vegetation is based on the 
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relationship between green vegetation and open soil 
surfaces (Eşitlik 7). Firstly, using NDVI, the areas devoid 
of vegetation were determined and NDVISoil was 
calculated. The regions where vegetation reaches the 
highest values are calculated as NDVIVegetation: 
 

DPM=(NDVIVegetationNDVISoil)/(NDVIVegetation+NDVISoil) (7) 

 
2.3.7. Multiple endmember spectral mixture 

analysis (MESMA) 
 

Spectral Mixture Analysis is used to create models of 
pixel reflections with linear or nonlinear approaches 
[34]. MESMA is used in studies in the literature for 
different purposes such as determining the bedrock 
surface [35], classifying vegetation cover [36], and 
drawing the boundaries of urban areas [37] (Eşitlik 8). 
The reason why MESMA was preferred in addition to 
spectral indices in this study is its high performance in 
the determination of KRD in previous studies [7]. 
 

  𝑅𝑖 =  ∑ 𝑓𝑘𝑅𝑖𝑘

𝑛

𝑘=1

+ 𝜀𝑖 (8) 

2.3.8. Support Vector Machine (SVM)  
 

The Support Vector Machine approach is used to 
classify images using remote sensing methods and 
statistical methods [38]. This method tries to find the 
most suitable sub-pixels between classes by making use 
of training values [39]. The United States Geological 
Survey and European Space Agency use different 
machine learning algorithms including SVM for Spectral 
Feature extraction [40]. Also, thanks to this method, good 
classification accuracy with multi-spectral bands such as 
Landsat images is obtained [41]. 

KRD Criteria: The criteria for determining areas 
where KRD is effective in the research area were 
evaluated by dividing it into 4 classes. Vegetation cover, 
EBR and soil depth were evaluated together for the 
classification of KRD (Table 3). The first of these are areas 
without desertification where the vegetation cover is 
alive and soil depth is high. Other classes are regions 
where desertification is mild, moderate and severe. 
Samples belonging to these four classes in the research 
area can be easily distinguished in field studies (Figure 
3). 
 

 

 
Figure 3. The views from different environments in study area of KRD in the research area; a) Severe KRD b) Moderate 

KRD c) mild KRD d) no KRD 
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Table 3. The criteria used in the classification of KRD in this study 
Karst Rocky Desertification Classes Exposed Bedrock Rate (%) Vegetation Cover (%) Soil Depth (cm) 

No-Desertification < %20 >80% More than 75 cm 
Mild 20% - 50% %51-%80 20 -75 cm 

Moderete 50%- 80% 20%- 50% 20-75 cm 
Severe > %80 < %20 Less than 20 cm 

 
 
 

The performances of all indices used in this study 
were carried out by statistically testing their accuracy 
according to their percentage of bedrock. Thus, 
determination coefficients (R2) were calculated between 
index results and spatial measurements (Eşitlik 9). 
 

R2= 𝛽0 + 𝛽1. 𝑋 + 𝜖 (9) 
 

Within the scope of the classification of the results 
obtained from the methods applied for determining the 
KRD, determination of manual class ranges, Iso Clustered 
Unsupervised Classification, MESMA and Support Vector 
Machine methods were used. Accuracy evaluations of the 
classified data, 32 out of the 82 randomly selected sample 
points, were performed by calculating the Kappa 
Coefficient (Eşitlik 10). 
 

K =
𝑃(𝑜) − 𝑃(𝑒)

1 − 𝑃(𝑒)
 (10) 

 

3. Results  
 

KRD develops in karst landscapes, where there is 
weak vegetation, vulnerable soil and warm-rainy climate 
conditions. Considering that agricultural activities have 
been going on for thousands of years in Anatolia, it is not 
possible to analyze the land independent from human 
activities. The weakening of the vegetation, the 
sensitization of the soil by human processing, and the 
interaction of human and natural processes increase the 
KRD effect.  In the Aksu Stream Basin, natural processes 
and human activities were effective jointly in the land to 
reach its current appearance. 

 
3.1. Comparison exposed bedrock rate between 

spectral indices  
 
In this study determined by field measurements, 

higher results were obtained in the linear relationship 
levels of the spectral indices results calculated. The linear 
relationship between the various Spectral Indices and 
Dimidiate Pixel Model results and the EBR obtained from 
the sample points was tested with the regression model 
(Figure 4). All of the Indices used for monitoring and 
mapping KRD have values between +1 and -1 (Figure 4). 
According to the results, high-level and statistically 
significant linear relationships were determined 
between the results of 4 methods and the Exposed 
Bedrock Rate. Among them, DPM and KBRI were 
determined to be statistically compatible with terrestrial 
measurements.  There is a statistically positive 
correlation between EBR values and KBRI, CRI2 and 

NDBI results, while there is a negative correlation 
between NDRI, NDVI and DPM. Highly significant 
relationships were determined between EBR obtained 
from sample points and the results of KBRI, NDBI, NDVI 
and DPM methods (Figure 4). A lower level of linear 
relationship was found between the other indices NDVI 
and NDBI and spatial measurements. In this study, the 
indices in which a low-level linear relationship is 
determined with local measurements are NDRI and CRI2. 
The linear relationships at the level between the results 
obtained within the scope of determining the KRD in this 
study and the field measurements mean that most of 
these methods show moderate performance. It is seen 
that EBR could not represent the bedrock in estimation, 
but DPM results were successful in predicting EBR. 

In all spectral index results of KRD, regions with 
severe desertification are expressed in red, and areas 
with healthy vegetation are expressed in green (Figure 
5). Considering the results obtained in this study, 
although there is a difference between the values, some 
similarities appear in the general outlook (Figure 5). 
Considering that the best estimate for the estimation of 
EBR is DPM results, KRD increases from south to north 
and from west to east in the Aksu Stream Basin (Figure 
5). 
 
3.2. Classification of results 
 

The situation that misleads the results obtained by RS 
methods for determining the KRD most and that causes 
the occurrence of error margin in classifications is the 
garrigue formations that develop on thin soil cover and 
spread continuously over the field. The fact that some 
areas determined in field observations where KRD is 
effective are covered with thin soil and garrigue cover 
which have a good value of vegetation reflection prevents 
the determination of desertification in these areas by 
satellite images (Figure 6).  

Accuracy analyses of classifications performed within 
the scope of determining the areas where KRD is effective 
were carried out within the scope of control points. 
Accordingly, the reliability of agreement between local 
examinations carried out with the field studies and the 
classified results was tested (Table 4). The results 
presented within the scope of KRD in the research area 
were classified using the Spectral Indices of Iso-Cluster 
Unsupervised Classification, MESMA and SVM methods. 
The accuracy of the classes and spatial measurements 
were calculated with the Kappa Coefficient (Table 4).  

According to these results, it was determined that the 
classification accuracy in MESMA and SVM methods was 
considerably higher. 
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Figure 5. The results of methods used to assess KRD: a) Karst Bare Rock Index (KBRI), b) Normalized Difference Rock 

Index (NDRI), c) Carbonate Rock Index 2 (CRI2), d) Normalized Difference Build-Up Index (NDBI), e) Normalized 
Difference Vegetation Index (NDVI), f) Dimidiate Pixel Model (DPM) 
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Figure 4. The Linear relationships between exposed bedrock rate and methods which used to assess KRD in this study 

 
Table 4. Kappa coefficient of classification results 

Classification ISO-KBRI ISO-NDRI ISO-CRI2 ISO-NDBI 
Overall accuracy 0,65 0,61 0,55 0,61 

Kappa 0,52 0,46 0,39 0,46 
Classification ISO-NDVI ISO-DPM MESMA SVM 

Overall accuracy 0,68 0,69 0,75 0,88 
Kappa 0,56 0,57 0,65 0,81 

 
 

 
Figure 6. A view of the uninterrupted garrigue 
formations that prevent to assess KRD based on RS 
methods around the Uluğbey settlement. 

 
According to the classification results with the highest 

statistical accuracy, it is seen that the SVM is effective in 
a significant part of the research area. High-accuracy 
results show that KRD is high around Lake Eğirdir 
(Figure 7).  

One of the important findings in this study is not only 
direct measurements of some indexes defined as high 
accuracy to explain KRD level, but also high overall 
accuracy was determined when they were classified. In 
this study, it was concluded that the most effective 

methods of KRD classification were MESMA and SVM 
which are two separate methods in the various 
classification methods used in this study. 
 
 
3.3. The effects of KRD: Space and People 
 

In the examinations carried out on the surfaces where 
KRD is effective in the research area, it is understood that 
human-induced effects accelerate this process. These 
effects are primarily seen in that the lands lose their 
productivity as a result of agricultural misuse and 
intensive land opening applications where the slope is 
increased (Figure 7). Uncontrolled human activities 
(overgrazing, improper agricultural practices and 
improper land use) and extreme natural events (fires) in 
karst lands play a critical role in desertification. To 
express the KRD process in the study area gradually, 
people first clear the area of vegetation where they will 
carry out agricultural activities. As agricultural activities 
are carried out in these areas where plowing activities 
are carried out, the topsoil is eroded. Over time, these 
areas are left to their fate as the yield decreases. The 
evidence of the abandonment of agricultural lands is 
piles of stones between rocks and grass (Figure 8). In this 
case, since there are sparse plants left to hold the soil 
cover in the field, bare rocky surfaces are exposed by 
erosion. 
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Figure 7. Classification ranges which of KRD results created 

 
4. Discussion 
 

Considering the studies in the literature, it is seen that 
different results are obtained by using the spectral 
indices used within the scope of KRD [14, 16]. In terms of 
general uses, KBRI, NDRI, CRI2 and NDBI indices other 
than NDVI are used to monitor karst rock desertification. 
The main indicator for monitoring KRD is the prevalence 
of EBR in the field. In the literature, there have been many 
studies on determining the relationship between 
vegetation and bedrock with remote sensing methods [8, 
9, 14, 16,17,31,42]. 

Natural processes that are effective in the occurrence 
of KRD in the field are also associated with the slowing of 

soil development due to the low silicate ratio caused by 
the geological structure of carbonate rocks [43]. The 
karst system becomes ecologically fragile due to slow soil 
development and weak vegetation in direct proportion to 
this situation [13]. In studies on KRD, classifications are 
made within the scope of vegetation status and open 
rocky surfaces [44]. Considering these classifications in 
general, Li and Wu [16] emphasize that mainly 4 classes 
can be mentioned in the study and it is stated that an 
absolute classification method is needed. Thus, by 
classifying the available data, it is possible to make more 
effective evaluations of how much of the area has been 
exposed to desertification and where this desertification 
is effective. 
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Figure 8. The views from areas where previously cultivated but not now used for agriculture due to desertification 

 
Studies in the literature have reached similar results 

to the findings of this study, showing that rock exposure 
rate and vegetation contribute the most to karst rocky 
desertification inference [42]. 

Although desertification developed on rocks is not a 
situation that develops only on carbonate rocks, KRD also 
has very specific features [43]. This situation arises from 
the geological properties of karst surfaces. The high 
chemical dissolution (melting) levels of carbonate rocks 
slow down soil development [4].   

As emphasized in the study by Li and Wu [16] within 
the scope of evaluating the effects of KRD, it is 
understood that a classification method is needed 
instead of spectral indices. In this study, a comparison 
was made between the spectral indices and the DPM 
model in terms of the determination of karst rock 
desertification. This comparison revealed different 
results from the spectral indexes with a high accuracy 
rate, as in other studies in the DPM literature [7, 45].  

Traditional methods (field studies) for monitoring 
karst rocky desertification mainly rely on field surveys, 
which require a quite deal of time and finance. Although 
using remote sensing images for monitoring karst rocky 
desertification is not limited by the topography, erosion 
or land cover, it also has disadvantages, including poor 
image quality (cloudiness), readily affected by human 
subjectivity, and strictly guaranteeing the accuracy [46].  
In this study, field studies from traditional karst rock 
desertification methods were also carried out in order to 
detect the inadequacies that may occur as well as the low 

cost and fast decision-making processes of remote 
sensing. It has been determined that some areas 
determined in the field studies where KRD is effective are 
covered with thin soil and garig cover with good 
vegetation reflectance, and the determination of 
desertification in these areas by satellite images is 
prevented. 

The most important reason for the natural integrity of 
the land is erosion becomes stronger as a result of human 
activities such as destroying vegetation, plowing and 
contracting roads [47]. 

Increasing erosion by removing vegetation due to 
reasons such as fires, overgrazing, improper agricultural 
practices and improper land use in the Mediterranean 
Basin is extremely effective KRD development [48, 49]. 

In addition, the Southern Anatolian mountains, which 
are described as Taurides, are generally composed of 
limestones. Widespread karstification in these areas has 
affected the people living here. Animal husbandry and 
agricultural activities carried out by people on these 
surfaces, which have a particularly difficult and faulty 
topography as karst, take place on the dolines, poljes, and 
paleo-valleys in these areas [50, 51]. In this study, it was 
determined that people gradually accelerate KRD 
directly in karst areas. First of all, people remove the 
vegetation on the surface where the soil is attached to the 
karst area. Then, they cultivate the areas with high soil 
thickness and process them as agricultural land. After the 
mobilized soil becomes susceptible to erosion, it is 
carried away by erosion processes and prepares the 
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ground for karst rock desertification. In the study, it was 
determined that people wanted to continue agriculture 
by collecting the rocks exposed in the agricultural lands 
and left the area as the yield decreased (Figure 8). 

 

5. Conclusion  
 

This study proposes mapping and monitoring of 
KRD development on karst landscapes in many parts of 
the World with different RS methods. In this study, high 
linear relationships were determined between some 
indices such as KBRI and EBR statistically; also, these 
indices gave high accuracy results when classified. This 
means that successful results could not be obtained with 
monitoring and classification of KRD with spectral 
indices. One of the possible reasons for not determining 
a statistically high linear relationship between spectral 
indices and KRD may be caused by bushes covering the 
surface. In addition to the poor results in monitoring and 
classification of KRD, it was determined that SVM 
(overall accuracy 88%) SVM and MESMA (overall 
accuracy 77%) methods were found to be successful at a 
good level. The possible reason why MESMA and SVM 
methods were more successful than spectral indices is 
the use of training series based on field measurements. It 
is understood that the classifications made by these two 
methods will be efficient in making long-term change 
detection analyses. In this way, classification results with 
the highest accuracy in the study area, the proportion of 
areas subject to severe karst desertification is 40%, those 
in moderate desertification process 17%, mild 
desertification 14% and non-desertification 29%.  

According to the results, it has been revealed that 
KRD is quite effective in some parts of the study area. The 
results obtained in this study, draw attention to the 
decrease in KRD in the areas where sea impact increases, 
and in the higher parts, the KRD increases as we move 
towards the inland areas, similar to the Aksu Stream 
Basin. In the north of the study area, it was observed that 
the KRD is particularly effective in the high topography 
bordered by plain surface. It is noteworthy that the main 
reason why KRD is effective here is erosion. In addition, 
it is clearly observed in the field that agricultural 
production is not efficient enough in the areas where the 
KRD is effective. The areas with a high Exposed Bedrock 
Rate where people are trying to conduct agricultural 
activities make the agricultural conditions worse and 
reduce agricultural productivity. Uncontrolled 
agriculture in these lands causes bedrock outcrops to rise 
to the surface faster. The emergence of bedrock means 
changing the agricultural land and living conditions for 
rural people. Thus, increasing difficulties such as 
inefficiency and limited product diversity show their 
conditions in rural settlements with many vacant 
households in the study area. Also, this situation can be 
accepted as a sign that KRD is effective in the high and 
sloping parts of the Karst regions in Türkiye. 
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