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 Carotid stenosis is an important etiological factor in the forming of ischemic stroke. The 
weight of stroke which is formed as a result of extracranial internal carotid artery stenosis or 
occlusion differs according to the location, size of interaction, collateral supply, and the 
mechanisms those cause interact. Therefore, it is important to measure the narrowness of 
the carotid with the calculation of the bifurcation angle. In this study, CT cross-sectional 
image sequences are used. The images are unsupervised classified, and the carotid veins are 
identified with the boundaries and centers of the clusters. Then, the angles are calculated 
with three center points of the veins from successive images. The center point of the 
calculation is from the vein which has the maximum area difference between one of the 
successive images. The results are evaluated using 5 samples with visual interpretation 
regarding the position and the correctness of the three successive images which have 
maximum area jump. 
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1. Introduction  
 

There are two types of Carotis Communis vessels 
that carry blood to the brain: Carotis interna and Carotis 
externa. The narrowing of the carotid arteries is referred 
to as carotid artery disease, also known as carotid artery 
stenosis. In most cases, plaques made of fatty substances 
and cholesterol are to blame for the carotid's 
narrowness. The risk of stroke is greatly enhanced if the 
carotid arteries are occluded. An expanded version of 
Demir and Demir's study [1] is presented here. 

The narrowing of the carotid Interna usually 
develops after separation from the carotid communities, 
and the main cause is turbulence flood in this section. 
Although the death rate has decreased in the recent 
decade, ischemic paralysis remains a major medical 
problem. Despite the use of thrombolysis and other 
treatment options in acute ischemia paralysis, 
prevention is the most successful approach. The data 
utilized to determine risk factors are based on 
epidemiological studies that were conducted at random 
[2]. 

As shown in Figure 1, the blood is supplied into the 
human brain via the right and left internal carotid artery 

which is split from the two-sided common carotis artery 
[3].  The focal neurological situations based on 
cerebrovascular diseases are called as stroke [4].  Carotis 
stenosis is an important etiological factor in the forming 
of ischemic stroke [5]. According to the studies which use 
Doppler USG, more than 50% of the automatically Carotis 
stenosis is seen in 4-5% of patients who are elder than 65 
years old [6]. The risk of stroke is increased by the degree 
of stenosis [7]. 

The weight of a stroke which is formed as a result of 
extracranial internal carotid artery stenosis or occlusion 
differs according to the location, size of interaction, 
collateral supply, and the mechanisms that cause 
interaction. Stroke causes demoralization and morbidity 
for the patients [8-10]. Stroke is the third most seen 
cause of death, and it is the first human disorder [6]. 
Thus, for detection of narrowness at an early stage has 
become of high interest to many researchers.  

The researches rely mainly on the determination of 
carotid bifurcation parameters, such as volume, position, 
etc. 

Dix et al. [10] identify the ideal measurement 
methods and acquisition parameters for CT angiography 
of carotid bifurcation. They use various measurement 
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approaches to compare SSD images (Shaded surface 
display), MIP (Maximum Intensity Projection), magnified 
axial images, and axial images. They offer automation but 
end with the benefits of CT imaging. 

A deformable tubular 3D Non-Uniform Rational B-
Splines (NURBS) model is used by Suinesiaputra et al. 
[11] to design and validate a method for automatic 
segmentation of the carotid artery lumen from 
volumetric MR Angiographic (MRA) images. They 
perform automatic cross-sections from the artery for the 
carotid measurements using MR imaging with NURBS 3D 
model output. 

Using stereoscopic PIV (Particle Image Velocimetry) 
measurements, Kefayati and Poepping [12] describe the 
disrupted flow in the stenosed carotid artery. 

Fisher [13] investigates the effect of the geometry of 
carotid arteries into the flow characteristics. He shows 
that the apoptotic and biochemical changes of upstream 
carotid plaque are closely linked to the development of 
stroke symptoms. Similarly, Stroud et.al [14] perform a 
numerical analysis of flow through a severe stenosis 
carotid artery bifurcation to investigate the geometry of 
the vessels. 

There is research that computes the blood flow in 
the vessels using numerical models. 

Cebral et al. [15] created a technique for creating 
accurate patient-specific finite element models of carotid 
artery blood flow. With a tubular deformable model 
along each artery branch, they used MR data to build 
anatomical models. At two points below and above the 
bifurcation, they calculated the flow velocities. They 
made it possible to describe the created model's flow 
patterns. 

Tan et. al. [16] develop turbulence models to predict 
blood flow patterns in the carotid artery and calculate the 
oscillating vessel Wall stresses. The model is MR image-
based and simulated the wall shear stress. 

In order to determine the mechanical properties 
resulting from the influence of the lipid core and 
calcification within a plaque, Wong et. al. [17] design a 
numerical simulation that reflects the distribution and 
structure of plaque via 3D blood-vessel modeling. 

Gul and Bernhard [18] applied three methods for 
modeling pressure and flow in carotid bifurcation. They 
investigate the model parameters such as flow 
resistance, diameter, and length of the vessel. 

Klooster et. al. [19] developed a method to register 
MR images to allow the classification of the vessel walls 
to investigate the plaque components. 

Using computational fluid dynamics (CFD) with 
single-layer and multilayer models, Lawrence-Brown et. 
al. [20] explore the biomechanical stress and strain 
behavior within the wall of the artery and its impact on 
plaque formation and rupture. They ran a CFD analysis to 
display the wall shear pressure and stress. 

Cross sectional CT imaging is used by McNamara et. 
al. [21] to identify patients with a high carotid bifurcation 
who may be more likely to experience surgical problems. 
Since their methodology relies on hand measurements, 
the outcomes could vary depending on the 
measurements used. 

The methods mentioned above are highly depending 
on the calculation of position e.g., volume and blood flow 

estimation in the carotid bifurcation. On the other hand, 
our research focuses the measurement of the 
narrowness with calculation of the angle automatically. 
 

 
Figure 1. Carotid artery 

 

2. Method 
 

Cross-sectional CT imagery is used for this work. A 
random number of image samples is provided for each 
patient. The images are acquired as a cross-section in 
every 0.5 mm. CT images are gray-scale, and carotid 
vessels are visually separable from the image 
background, which allows running the traditional image 
classification methods such as ISODATA [22].  

The processing chain starts with image 
classification. The classification approach segments the 
image into different categories which include the carotid 
vein clusters. Then, the process is followed by 
morphological erosion to overcome the connectivity 
problem of the separated veins in the images although 
they are separate in reality. Then, the distances between 
the center and the created points along the cluster 
boundaries are calculated to determine the circularity of 
the cluster.  

Three parameters are used to determine the cluster 
if it belongs to the carotid vein class; the standard 
deviation of the distance values between the center and 
boundary points; the minimum and maximum vein 
section size; the maximum distance between the center 
points which come from the images. If three criteria meet 
the defined thresholds, then the corresponding cluster is 
selected as a carotid vein. 

The areas are compared between the clusters from 
the successive images. The cluster which shows the 
maximum area difference among all the pairs is selected 
as the bifurcation part of the carotid. The angle is 
calculated between the selected vein center point and the 
center points from one image before and after. The 
processing schema can be found in Figure 2. 
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Figure 2. Processing workflow 

 

2.1. CT Image classification 
 

Image classification methods are widely used in 
urban planning, mapping applications, extraterrestrial 
research, forensic applications, medical image analysis, 
and many other topics which use imagery information. It 
is a technique that classifies image pixels into different 
categories. In medical image analysis, these categories 
can be listed as vessels, the brain, and other parts of the 
imaged part of the body.  

The first step of image classification is the 
identification of the feature parameters with spectral 
characteristics. Then, feature space is divided into 
subspaces which do not overlap between each other. The 
classification is finalized with the calculation of the 
distance between image pixels and each subspace.  

There are two types of image classification, one is 
unsupervised and the other is supervised image 
classification. In supervised classification, prior 
knowledge is used to determine the membership of 
pixels to the corresponding classes. The user selects the 
pixels with his own knowledge, and the algorithm 
estimates the parameters with this prior knowledge. 
There are several algorithms that are used for supervised 
classification. One uses a minimum distance to assign the 
pixel to the corresponding class. In this algorithm, the 
minimum distance is computed between the center of the 
class and the pixel value. The center of the class is 
calculated using the training pixel samples. 

Another algorithm is maximum likelihood 
classification which calculates the likelihood of each pixel 
point by point and assigns the pixel to the corresponding 
class with the maximum likelihood. Maximum likelihood 
classification (MLC) is one of the most widely used 
techniques in supervised classification. Other supervised 
classification methods are Parallelepiped classification 
and Decision tree classification. Parallelepiped 
classification is based on a single rule while the decision 
tree considers different characteristics of the objects. 

The unsupervised classification does not use any of 
the existing prior knowledge and creates clusters from 
the image according to its spectral characteristics. There 
are two kinds of unsupervised classification which are 
mostly used in many image processing applications 
which are K-means and ISODATA classification. 

Both have two different aspects. K-means adjust a 
class each time, and each class’s average value is 

recalculated. ISODATA recalculates the class averages 
after adjusting all samples. Both are standard 
classification methods in any remote sensing software 
package.  

The classical ISODATA classification algorithm has 
the following steps; first, the average gray value of the 
whole image is calculated. Secondly, the image is 
classified using the calculated average as the threshold 
value. Then, the average values are calculated for the 
created classes, and these values are used as new 
thresholds. This is repeated unless the threshold values 
are not changed anymore. 

CT images are in gray scale, and the carotid vessels 
might be imaged from different directions. On the other 
hand, carotid vessels are separable from another 
background in the images also visually (Figure 3). 
 

 
Figure 3. Original CT image of the bifurcation position 

 

Finding the different vessel classes on the images is 
the first challenge. In its most basic form, CT imagery is 
grayscale. In comparison to other areas of the photos, the 
vessels are noticeably brighter. Using image 
classification methods like the ISODATA algorithm, this 
information is adequate to identify carotid vessels. 

A collection of samples are grouped using the 
clustering algorithm used by ISODATA, and each sample 
is represented as a vector, such as X=[x1,...,xN]T. The 
cluster is automatically updated after each iteration to 
combine comparable segments and to break segments 
with high standard deviations. The following equation is 
used to determine the sum of squared distances between 
each pixel and its associated cluster center: 
 

SSdistances= ∑(𝑋 − 𝐶(𝑥))2 (1) 
 

where C(x) is the cluster mean for the pixel x. The 
Mean Squared Error (MSE), which is calculated as 
follows, is used to identify cluster variability. 
 

MSE=SS_distances/(N-c) b (2) 
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where N is the number of pixels, c indicates the 
number of clusters, and b is the number of spectral 
bands, for CT images it is 1 [1,22]. 
 

 
Figure 4. Histogram of CT image 

 
As shown in Figure 4, five classes are defined with 

analysis of the number of peak points over the histogram. 
Figure 5 shows the classification result. 
 

 
Figure 5. Classified CT image, the colors represent 

different clusters 
 

2.2. Morphological operation 
 

After clustering each section image, morphology 
operator erosion has been applied to the classification 
result to identify the vessels which are separated in 
reality but look connected to the images. 

Morphological operations are one of the basic 
processes in image processing, and they apply a 
structuring element over the input image and create an 
output image. The pixel values of the input image are 
compared with the neighbors; the size and shape of the 
neighbors directly affect the result of the operations. 
Since the centers are the point of interest, not the 
boundaries, erosion is only the used approach. Erosion 
removes the pixels on the object boundaries by removing 
a number of pixels from the objects in the input image. 

As seen in Figure 6, the carotid vessels are separated 
using erosion since the connectivity of the veins is caused 
by image artifacts.  
 

 
Figure 6. Before (left) and after(right) morphological 

operation 
 

2.3. Identification of the carotid veins 
 

The main idea to identify the vein clusters is using 
the standard deviation of the distance series between the 
cluster center and the vein boundary.  Secondly, the veins 
have a certain size compared to the other clusters. 

The vessels that part of the carotid artery have a 
circular form. The circularity can be determined with 
statistical analysis by calculating the standard deviation 
of the distance between the center and the border of the 
vessels. To do this, the centers of vessel clusters have 
been extracted, and then a series of vessel border points 
is generated. The distance is calculated between each 
border point and the center point. The center and 
boundary points are created using the ArcGIS software 
package (Figure 7). It simply extracts the centroid of the 
clusters and creates the points along the cluster 
boundaries. The gap between the points is set as a ground 
sample distance value. 

 

 
Figure 7. The center and boundary points of the 

extracted classes 
 

The distance between the cluster and the boundary 
point is calculated as follows; 

 

 
(3) 

 

(4) 

Xc, Yc values are coordinates of the center point, Xb 
and Yb values are the coordinates of the boundary point 
i, Di is the calculated distance with ith boundary point, s2 
is variance, D is the mean value of all distances, n number 
of calculated distance value. 
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Another criterion is the area of the clusters. The 
maximum and minimum area thresholds are set by 
consideration of vein geometry.  

The center points of the clusters which meet certain 
criteria (circularity and area) are overlaid and the 
distances of the center points are calculated between 
each other. The carotid center points always remain and 
they should be in a certain distance between each other 
after overlaying altogether on the same plane. The 
number of center points which are close each other is 
same as the number of the used image. 
 

 
Figure 8. The image numbers of the overlaid center 

points 
 

As shown in Figure 8, the center points of clusters are 
overlaid on the clusters image from image 1. Each point 
has the number of its image label.  
 
The process starts with the first image, 
• Takes the center points, 
• Then check if there is any center point in its 
neighborhood from the next image, here image 2.  
• If any point is found, then the next center point 
from the next image is searched in the neighborhood of 
the center point from the successive images.  
• This process is continued until the last image. 
 

In the Figure 8, each cluster centers are numbered 
with their image numbers. The number of neighbor 
points is same as the number of used images. This case is 
valid only for the carotid veins (red points in Figure 8).  
 
2.4. Calculation of the angle 
 

Three center points are used to calculate the carotid 
angle, one center point in the middle and the other two 
center points from the images before and after. The 
center point which is in the middle is selected based on 
the area difference between clusters. The vein cluster 
which has the biggest area difference between the 
clusters from the image after is selected as the middle, 
and its center point is the used center point for the angle 
calculation.  

Let PC [1…n] center points from the same cluster from 
successive images. PCi is the cluster in the middle, which 
is the bifurcation area of the vein. Ci-1 and Ci+1 
successive point those used in the angle calculation. 

PCi, PCi-1, and PCi+1 are the center points from the 
selected clusters for calculating the angle as shown in 
Figure 9. 
 

 
Figure 9. Illustration of carotid vein center points 

 
The angle Ѳ is calculated using following formulas; 

 

PCi+1PCi
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =PCi+1-PCi (5) 

  

PCiPCi−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =PCi-PCi−1 (6) 

  

PCi+1PCi
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . PCiPCi−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ‖PCi+1PCi
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖. ‖PCiPCi−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖. cos Ѳ (7) 
  

Ѳ = arccos (
PCi+1PCi
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . PCiPCi−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖PCi+1PCi
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖. ‖PCiPCi−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
) (8) 

 
From the image acquisition, the Z difference between 

each image is 0.5 mm. Z coordinate is set as 0 for the 
center points at the image in the bottom, other center 
points from the successive images have Z coordinate 
according to image position in the acquisition (e.g., Z 
coordinate for the 4the image would be 0.05 x 4= 0.2 
mm). 
 

3. Results  
 

For testing the method, 15 crosses sectional CT 
images from 5 different patients are used.  After image 
classification, erosion is applied on the extracted clusters 
for each cross-sectional CT image. 

The center and boundary points are extracted to 
analyze the carotid vein clusters.  

Table 1 shows the three images which have been 
used in the angle calculation from the output of the 
method and the calculated angles. On the other hand, the 
information regarding the position of the carotid is also 
achieved depending on the coordinates of the angle with 
respect to the image center. 
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Table 1. Quality evaluation of the results, only three clipped images which shows the case of bifurcation 

Image 1 Image 2 Image 3 Angle (Degrees) Position 

   

38.6823 Right  

     

   

43.5219 Right  

     

   

30.2174 Right  

     

   

12.1425 Left  

     

   

54.1151 Right  
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The results are evaluated with a visual interpretation 
of three image outputs from the tests. In case three 
images are the ones that have a bifurcation in the middle, 
then the result from the method has been confirmed. 
According to the performance evaluation, for all the 
tested image samples, the developed method gave the 
correct three images, including the bifurcation point in 
the middle, including giving information about the side of 
the carotid angle. 
 
 

4. Discussion 
 

The measurement of a carotid angle is often 
performed with manual measurements on the CT images 
by medical doctors. Even one-pixel movement during the 
measurement, may shift the value of the angle, therefore 
some methods have to be developed accordingly to allow 
precise measurement.  

Cross-sectional CT images are used in previous 
studies [21]. McNamara et.al [21] used an external 
software to measure the carotid artery and straight-line 
distance to identify the high carotid bifurcation. Their 
measurement is performed with use of the base of skull. 
On the other hand, there are studies which are based on 
simulating blood flow in the veins [21]. Lawrence-Brown 
analyzes stress in carotid artery [20]. Our method uses 
cross sections of carotid artery which makes it different 
than the other methods since they derive the angle values 
with manual measurements on the acquired images. The 
evaluation is difficult since it is only possible with manual 
measurements, but it will be meaningless in case the 
calculated angles would be compared with the ones 
which derived on the images manually. Therefore, the 
only evaluation could be done with checking their 
position right or left. If the image coordinates of the 
carotid stay on the left of the image center, then the 
carotid was classified as left, else right. 

 

5. Conclusion  
 

The narrowness of carotid angle is an important 
factor for the human health. In general, the carotid angle 
is calculated with manual measurements by the medical 
doctors. In this study, a new method is developed to 
calculate the carotid angle using cross sectional CT 
images.  

Out method automatically select the image where the 
bifurcation occurs, and then calculates the angle between 
three images, the image with a bifurcation in the middle, 
and one image after and other before the bifurcation. 

The evaluation shows that the selected images are all 
correct for the calculation of the carotid angle. This 
allows medical doctors to select the image which has 
bifurcation without any mistake, and to have the carotid 
angle without performing any manual measurement 
with better accuracy. 

Future work may include the reconstruction of the 
carotid vein to allow analyzing the blood flow in the 
carotid veins in 3D, the analyzing of the role of the carotid 
communis on the patients with stenosis. 
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