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Abstract 

Many different approaches for neural network based hash functions have been proposed. 

Statistical analysis must correlate security of them. This paper proposes novel neural hashing 

approach for gray scale image authentication. The suggested system is rapid, robust, useful 

and secure. Proposed hash function generates hash values using neural network one-way 

property and non-linear techniques. As a result security and performance analysis are 

performed and satisfying results are achieved. These features are dominant reasons for 

preferring against traditional ones. 
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Introduction 

Cryptography uses mathematical techniques for information security. Information security is 

now a compulsory component of commercial applications, military communications and also 

social media implementations. So it can be said that cryptography is, furthermore, the most 

significant part of communication security (Arvandi et al. 2006). It maintains the 

condentiality that is the core of information security. Any cryptography requires condentiality, 

authentication, integrity and non-repudiation from those authorized to have it. Authentication 

relates to the identication of two parties entering into communication, while integrity 

addresses the unauthorized modification of an element inserted into the system (Sağıroğlu & 

Özkaya 2007). To date, there has been a large number of studies intended to advance robust 

cryptosystems and use them in communications. It is a novel and growing technique to 
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perform the non-linear property of neural network to create secure hash function. Hash 

functions converts major definitions to minor values. As an input any message can be used, 

and as an output fixed length value is produced. Most popular hash functions are MD-5 (R. 

Rivest: 1992), SHA-2 that is by NSA (National Security Agency) and published in 2002 by 

the NIST as a U.S FIPS (Federal Information processing Standard) and SHA-3 that is based 

on an instance of the KECCAK algorithm that NIST selected as the winner of the 

Cryptographic Hash Algorithm Competition in 2013. Hash functions are used for data 

integrity and digital signature. Digital signature signs data in order to prove the accuracy of 

data and ID of sender. Hash function is digest of message which is attached to original 

message. Any modifying in original message makes hash function disabled. In other words; 

hash function is an information generating process from any message using mathematical 

techniques. Generated digital information is called message digest. Recycling of hash function 

must be almost impossible, so hash function must not inspire anyone about original message. 

It must be impossible to predict different messages whose hash values are the same. Hash 

value of every message is different, so any modifying in the original message makes digital 

signature invalid. Cryptography needs functions like this because they are able to provide 

safety communications (Soyalıç 2005). Hash functions are also used in Network and Internet 

Security. Any domain controlled PC client password is saved in _le server manager as its hash 

value, so administrator cannot do see clients original passwords. Also any malicious access to 

server database cannot capture client’s original passwords. Up to now, there have been lots of 

studies to advance robust machine learning based hash-functions and use them in 

communications (Zou & Xiao 2009; Lian et al. 2007; YAYIK & KUTLU n.d.; Yayık & Kutlu 

2013; Huang 2011). Near past and recently there is relatively much interest in using neural 

networks for cryptography (Lian et al. 2006) . Statistical analysis for sensitivity of SHA-2 

secure hash algorithm and neural based hash function are nearly same (Sumangala et al. 

2011), so it can be said that neural network will be used in cryptology in near future. There 

are many different approaches for image hash function algorithms. In 2011, Radon Transform 

based image fingerprinting (hashing) is proposed (Seo et al. 2004). Monga and Evans 

extracted vital image features using wavelet-based feature detection algorithm in order to 

advance image hashing system (Monga et al. 2006). In 2006, rotation invariance of Fourier-

Mellin transform and controlled randomization based image hashing algorithm is introduced 

(Swaminathan et al. 2006). In last two decades neural network based hash function is studied 

by some researchers (Zou & Xiao 2009; Lian et al. 2007; YAYIK & KUTLU n.d.; Yayık & 

Kutlu 2013; Sumangala et al. 2011). Common feature of these neural network based related 

works is considering gray scale images or texts. In this paper, secure and robust neural image 

hash function for gray scale image, which uses non-linearity. Then, many experiments are 

performed to validate its security and statistical requirements. The rest of this paper is 

organized as follows. Section 2 describes proposed image hash function. Section 3 presents 

experimental results and performance analysis. Finally conclusion is given in Section 4. 

 

Materials and Methods 

 

Proposed Model 

 

In the proposed hash function neural network shown in Figure 1. is used which has three 

layers that carries out ideal hash functions confusion, diffusion and compression properties. 
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Figure 1. Neural Network Structure. 
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Block Hash 

Neural network based hash function is depicted in Figure 2. 
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Each dimensions are passed through the block hash and 32x512 sized is performed. XOR 

values of consecutive rows are calculated in order to obtain 1x512 binary value (1). 

 
Figure 2. Block Hash. 
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Performance Analysis 

In this section, whether suggested hash function validates statistical and security requirements 

or not is analyzed. So that, statistical distribution, diffusion and confusion, collision resistance 

and meet-in-the-middle analysis are performed. 

 

Statistical Distribution of Hash Value 

 

Security of hash function is directly proportional with uniform distribution of hash value. 

Figure 3 illustrates 2D graphs of pixel values of the original image localized. 

 
Figure 3. 2D graphs of pixel values of the original image localized. 

 

Statistical Analyses of Diffusion and Confusion 

Binary format of hash value consists of only 0 and 1 bits, while hexadecimal hash value 

consists of 16 different characters. Because of this changes in binary hash value must be 

nearly 50% (as shown in Table 3), in contrast changes in hexadecimal value must be nearly 

100%, for each modification. Otherwise diffusion property do not satisfy. In order to control 

binary and hexadecimal hash value changes following steps are applied: 1. Calculate original 

image binary and hexadecimal hash value 2. Change value of image 10 pixels randomly. 3. 

Calculate modified image binary and hexadecimal hash value. 4. Compare and find 

differences between original and modified images binary and hexadecimal hash values. 5. 

Repeat 1-4 process Q times. In Figure 4, binary sensitivity of hash value is presented. As it is 

mentioned binary sensitivity is nearly 50% that satisfies diffusion of hash value. Also, almost 

100% hexadecimal sensitivity mean the algorithm has very strong capability of robustness. 

Statistical parameters for binary sensitivity are defined below: Mean number of bits changed: 
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Mean changed probability: 
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Where N  character number of binary hash value ( 256 ). Through tests 

2048,1024,512,256Q  is performed and results are listed in Table 1. 

 One Way Property 

Neural Networks most important and intriguing property that makes them useful for 

applications is their generalization capabilities that is their ability to produce reasonable 

outputs when they are fed with inputs not previously encountered. If targets' size is so 

different from inputs' size it is difficult to compute target from input, while it is easy to 

compute input from target. Due to this property neural network can be used in hash functions 

Desai2013. Parallel implementation is a significant property of neural networks. Each layer is 

paralleled. So, they can implement certain functionality independently. 

 

Figure 4. Binary Sensitivity. 
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According to this, ANN are available for data progressing Neural networks has ability to 

make relationship using training function with non-linear and complicated values. Confusion 

is a special property caused by the nonlinear structure of neural networks. This property 

makes the output depend on the input in a nonlinear and complicated manner. It means that, a 

bit of output depends on all the bits of the input in a complicated way. Thus, it is difficult to 

determine the exact input. The confusion property of neural networks makes them a potential 

choice for cipher designing. 

Table 1 Statistics of the number of bit changed. 

  Q=256 Q=512 Q=1024 Q=2048 Mean 

B min 210 229 228 227 223,50 

B max 280 280 290 286 284,00 

_ 

B 
254,6 254,87 254,87 255,21 254,89 

 

8,57 8,37 8,80 8,70 8,61 

P min 41,06 44,72 44,53 44,33 43,66 

P max 54,68 54,68 56,64 55,85 55,46 

_ 

P % 
49,72 49,77 49,77 49,84 49,78 

 

4,92 4,92 4,92 4,93 4,92 

   

Analysis of Collision Resistance 

Experimenters must make sure that each bit of original image effects hash value, after 

generating hash value. In other words hash value must be fully depended on the original 

image. Single bit change in image do not affects hash value that means vital information 

security vulnerability. So in this paper, collision resistance analyze is performed Q times as 

follows: 1. Generate hash value of original image (described in section 3.2) and store in 

ASCII format. 2. Randomly change least bits in original image 3. Generate hash value of new 

modified version of original image and store in ASCII format 4. Compare hash values 

generated in 1 and 3. Find and count same ASCII values at the same location.(3) Plot of 

distribution of the number of collision hits is illustrated in Figure 5.  
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Figure 5. Binary Sensitivity. 

Figure 5. Maximum, minimum, mean values and standard deviations are listed in Table. 

Maximum, minimum, mean values and standard deviations are listed in Table 2. 

Table 2. Collision Resistance Statistical Parameters 

Iteration Maximum Minimum Mean 
Standard 

Error 

256 15 1 7,39 2,31 

512 16 2 7,45 2,31 

1024 15 1 7,59 2,27 

2048 16 1 7,52 2,20 

 

Meet-In-The-Middle Attack. 

A meet-in-the middle attack is a technique of cryptanalysis against a block cipher introduced 

in 1977 (Diffie & Hellman 1977). It is a passive attack; it may allow the attacker to read 

messages without authorization, but against most cryptosystems it does not allow him to alter 

messages or send his own (Vanstone et al. 1996). The attacker must be able to calculate 

possible values of the same intermediate variable (the middle) in two independent ways, 

starting either from the original or from the hash value. The attacker calculates some possible 

values each way and compares the results.  

If original image is ).....(
1210 nn
MMMMMM


 its hash value H . Expected image found 

using meet-in-the-middle attack is )'.....('
1210 nn
MMMMMM


  its hash value H . In other 

words attack process is replacing 
n

M with '
n

M . But attacker cannot create 
'

n
M

that is not in 

relation with hash value described in previous sections.  

 

 

http://en.citizendium.org/wiki/Cryptanalysis
http://en.citizendium.org/wiki/Block_cipher
http://en.citizendium.org/wiki/Passive_attack
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Results and Conclusions 

Secure hash function based machine learning techniques is presented and analyzed here. 

Proposed algorithm is efficient to require diffusion and confusion properties due to neural 

network information transfer process inspired from real biological systems. Analyses and 

experiments explained in this paper reveals that hash function satisfies sensitivity, minimum 

collision hit requirements and powerful against attacks like meet-in-the-middle. 

Figure 3, uniform distribution of hexadecimal hash value against local distribution of original 

image means high randomness that requires confusion. Figure 4, nearly 50% difference of 

binary format of hash value means high sensitivity that requires diffusion. But Figure 4 is not 

sufficient only by itself. In order to correlate Figure 4, statistically approaches are shown in 

Table 1. When looping sensitivity testing process as Q times, average 254, minimum 224, 

maximum 284 bits of 512 bits differs with minor standard deviation (8.61) and minimum 

43.66%, maximum 55.46%, average 49.78% of 512 bits differs with minor standard deviation 

(4.92). These results satisfy sensitivity of neural network based hash function. 

Calculation of same ASCII hash values at the same location that is called collision resistance 

is performed as Q times. Figure 5. illustrates collision resistance when Q = 2048. When 

looping collision resistance testing process as Q times, average 7 bit same ASCII values are 

found at the same location that can be ignored due to minority. So these results satisfy 

collision resistance of neural network based hash function. As a result; this system can be 

used in communication applications especially in military applications. 
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