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Introduction 

Aerial image, which includes images of objects captured 

from the air, is a popular technological tool used in various 

fields such as aviation, geographic information systems, 

and agriculture. Aerial photography, or aerial imaging, 

involves capturing images from an aircraft, drone, or other 

airborne platforms. When capturing moving images, it is 

referred to as aerial videography. Aerial and satellite 

images, known as remotely sensed images, allow for 

accurate mapping of land cover and enable the 

understanding of landscape features at regional, continental, 

and even global scales.  

Semantic segmentation, a popular field that is accomplished 

with deep learning methods, is used to distinguish objects 

in aerial images. Semantic segmentation is the process of 

assigning each pixel in an image to predefined classes and 

is widely used in computer vision-related areas. Semantic 

segmentation has a extensive body of literature. Approaches 

to semantic segmentation can be categorized into traditional 

and innovative methods. Traditional segmentation methods 

exclusively utilize image processing techniques, while 

modern approaches leverage deep learning architectures. 

Traditional techniques for image segmentation include 

methods like thresholding, clustering, partial differential 

equation-based approaches, graph partitioning, watershed 

transformation, and so forth. These traditional segmentation 

techniques have widespread applications [1-3]. When we 

investigate current segmentation methods, we observe the 

utilization of convolutional neural networks [4-6] and 

Generative Adversarial Networks [7-9]. 

Generative Adversarial Networks (GANs), a deep learning 

algorithm, were proposed by Ian Goodfellow in 2014 for 

image synthesis [10]. GANs perform image synthesis in 

both supervised and unsupervised transformations. In the 

case of supervised transformation, it is necessary to have 

image pairs in two different domains. For learning the 

probability distribution, each input image is transformed 

into the corresponding output image in the other domain. In 

the literature, there are many studies using deep learning 

methods for semantic segmentation of aerial images. 

In 2015, Saito et al., used CNN (Convolutional neural 

network) to train pixel labeling of building areas for the 

purpose of determining the semantic segmentation of aerial 

images, using Dijkstra's algorithm [11]. In 2018, Chen et 

al., proposed the periodic shuffling of aerial images for 

semantic segmentation, contributing to improving the field 

of view [12]. This model achieved effective results for two 

different datasets. In 2020, Chai et al., proposed a semantic 
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ABSTRACT 

 
Object detection and segmentation in aerial images is currently a vibrant and significant field of research. 

The iSAID dataset has been created for object detection in images captured by aerial vehicles. In this study, 

image semantic segmentation was performed on the iSAID dataset using Generative Adversarial Networks 

(GANs). The compared GAN methods are CycleGAN, DCLGAN, SimDCL, and SSimDCL. All methods 

operate on unpaired images. DCLGAN and SimDCL methods are derived by taking inspiration from the 

CycleGAN method. In these methods, cost functions and network structures vary. This study thoroughly 

examines the methods, and their similarities and differences are observed. After semantic segmentation is 

performed, the results are presented using both visual and measurement metrics. Measurement metrics 

such as FID, KID, SCOOT, PSNR, FSIM, and SSIM are used. When looking at the metric results, the 

SSimDCL method ranks first with 132.62071 FID, 0.07825 KID, 0.6406 SCOOT, 0.85973 PSNR, 37.862 

FSIM, and 0.82725 SSIM; the SimDCL method shows the second-best performance with 149.82306 FID, 

0.10215 KID, 0.60142 SCOOT, 0.85224 PSNR, 37.4747 FSIM, and 0.82429 SSIM. The CycleGAN 

method, on the other hand, ranks last among the applied methods with results of 202.33857 FID, 0.16795 

KID, 0.53218 SCOOT, 0.83408 PSNR, 35.7062 FSIM, and 0.7751 SSIM.Experimental studies show that 

SSimDCL and SimDCL methods outperform other methods in iSAID image semantic segmentation. 

CycleGAN method, on the other hand, is observed to be less successful compared to other methods. The 

aim of this study is to perform automatic semantic segmentation in aerial images. 
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segmentation model with Deep CNNs (DCNNs) to learn 

spatial context from high-resolution aerial images [13]. This 

model predicted distance maps to improve segmentation 

efficiency. In 2021, Abdollahi et al., proposed a GAN 

method for segmenting roads in high-resolution aerial 

images [14]. This model also used a modified UNet model 

(MUNet) to achieve satisfactory results. In 2021, Wang et 

al. designed a real-time semantic segmentation model for 

high-resolution aerial images called the Aerial-BiseNet 

[15]. Aerial-BiseNet used two modules called the "Feature 

Attention Module (FAM)" and the "Channel Attention-

based Feature Fusion Module (CAFFM)" to analyze 

features. 

In 2022, Koç and Özyurt proposed an examination of 

synthetic images produced with DCGAN based on the size 

of data and epoch [16]. The results indicated that the success 

of the generated fraudulent images was directly 

proportional to the number of data and the increase in 

epoch. In 2021, Şahin and Talu conducted a performance 

comparison of Generative Adversarial Networks (GANs) in 

in mustache pattern generation [17]. They utilized GAN 

architectures, including Pix2Pix, CycleGAN, DiscoGAN, 

and AttentionGAN. The study revealed that the generation 

speed of mustache patterns dropped below one second, 

while the production accuracy reached levels around 86%. 

In 2023, Şener and Ergen proposed "Enhancing Image 

Classification Performance through Discrete Cosine 

Transformation on Augmented Facial Images using GANs" 

[18]. The study found that the classification of faces could 

be improved by 30% compared to the normal classification 

model. 

In 2022, Desai and Ghose suggested an active learning-

based sampling strategy to select a highly representative 

labeled training dataset. Their proposed method resulted in 

a 27% improvement in mIoU with only 2% labeled data on 

two semantic segmentation datasets, including satellite 

images [19]. In 2022, Abdelfattah et al. introduced a simple 

yet effective method called PLGAN (Generative 

Adversarial Networks for Power-Line Segmentation in 

Aerial Images) to segment power lines from aerial images 

with different backgrounds. PLGAN, instead of directly 

using adversary networks to create segmentations, takes 

specific decoding features and places them in another 

semantic segmentation network, considering more context, 

geometry, and appearance information of power lines [20]. 

Comprehensive experiments and analyses showed that 

PLGAN outperformed previous state-of-the-art methods. 

In this study, the iSAID dataset was used for semantic 

segmentation of aerial images. Recently, in 2023, Zhou et 

al. [21] proposed a Weakly Supervised Semantic 

Segmentation (WSSS) method. When dealing with Remote 

Sensing (RS) images with complex backgrounds and 

multiple categories, it can be challenging to locate and 

distinguish the target categories. Based on extensive 

experiments, their WSSS framework has shown superiority 

over RS datasets and has become the first WSSS framework 

to achieve state-of-the-art results on the iSAID dataset, 

exploring cross-image semantics in multi-category RS 

scenes using only image-level labels. 

In this study, semantic segmentation of the two-dimensional 

iSAID images was compared among state-of-the-art GAN 

architectures, including CycleGAN [22], DCLGAN [23], 

SimDCL [23], and SSimDCL [24]. Metric comparisons 

revealed that the recent SSimDCL method outperformed 

other methods in semantic segmentation, providing more 

superior and satisfactory results. It was observed that this 

method could be used as an automatic image segmentation 

system. 

The main contributions of this study can be summarized as 

follows: 

• Comparison of state-of-the-art GAN architectures, 

including CycleGAN, DCLGAN, SimDCL, and 

SSimDCL, for semantic segmentation of two-

dimensional iSAID images. 

• Observing that the SSimDCL method provides 

superior and satisfactory results in semantic 

segmentation when compared to other methods. 

• SSimDCL method has the potential to be used as 

an automatic image segmentation system. 

• It introduces a new perspective on conducting 

semantic segmentation analysis for object 

detection in aerial images. 

• The study observed the results of the new and 

highly accurate SSimDCL model by transforming 

unsupervised image segmentation methods from 

state-of-the-art models into supervised ones. 

These contributions highlight the advancement in the field 

of semantic segmentation for two-dimensional aerial 

images using GAN architectures, particularly the 

effectiveness of the SSimDCL method. 

The remaining organization of the article is as follows: In 

Section 2, materials and methods (CycleGAN, DCLGAN, 

SimDCL, and SSimDCL) are presented; Section 3 

discusses experimental studies and their results; Section 4 

provides a discussion and conclusion to conclude the 

article. 

Materials and Methods 

Used Dataset 

The iSAID (A Large-scale Dataset for Semantic 

Segmentation in Aerial Images) is a dataset [25]. Existing 

Earth Vision datasets are suitable for semantic 

segmentation or object detection. iSAID, for instance, is the 

first benchmark dataset for segmentation in aerial images. 

This large-scale and densely annotated dataset contains 

655,451 object instances across 15 categories in 2,806 high-

resolution images. The distinctive features of the iSAID 

dataset are as follows:  
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• A large number of images with high spatial 

resolution,  

• 15 important and commonly occurring categories,  

• Numerous examples per category,  

• A substantial number of labeled examples per 

image that can assist in learning contextual 

information,  

• Significant variations in object scale, including 

small, medium, and large objects within the same 

image, 

• An unequal distribution of objects in different 

directions in images depicting real-world weather 

conditions,  

• A few small-sized objects with uncertain 

appearances that can only be resolved through 

contextual reasoning,  

• Precise annotations are available at the example 

level, cross-checked and verified by expert 

annotators following well-defined guidelines, and 

conducted by professional annotators. 

These distinctive features make the iSAID dataset a 

valuable resource for semantic segmentation and object 

detection in aerial images. 

In this study, the semantic segmentation images shown in 

Fig. 1 were utilized. The training dataset consisted of 1302 

real images and 1302 corresponding ground truth images 

used for semantic segmentation. The test dataset included 

109 real images, and it was used to obtain the results of 

semantic segmentation. These are 109 images captured 

from the air. The aerial images consist of a variety of scenes 

including roads, vehicles, rivers, airports, and seaports. The 

segmented results mainly focus on vehicles such as cars, 

trucks, and ships. Randomly selected training and test data 

were used in the iSAID dataset. The aim of this article is to 

perform automatic segmentation on the dataset.The image 

dimensions were resized to 256 × 256 × 3 within the code 

for analysis. 

 

Figure 1. iSAID dataset image sample 

Training Details 

In the DCLGAN, SimDCL, and SSimDCL architectures, 

there are two generator networks, two feature-extracting 

layers, and two discriminator networks. In the CycleGAN 

architecture, there are two generator networks and one 

discriminator network. In this study, the internal structures 

of these methods include the same network content. The 

difference lies in the properties and numbers of the 

networks present in each method. 

Fig. 2 illustrates the internal structure of the discriminator 

network. The discriminator network employs the 

PatchGAN architecture. Fig. 3 depicts the network structure 

used for feature extraction and embedding of the image in 

the DCLGAN, SimDCL, and SSimDCL methods. Fig. 4 

provides an overview of the generator network's structure 

and network layers. 

 

 

 

Figure 2. Discriminator Network Architecture 
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Figure 3. Feature Extracting Embedding Network Architecture 

 

 

Figure 4. Generator Network Architecture (a) Inner Structure of the Network (b) Representation of Network Layers in the 

Inner Structure. 

Image Segmentation Architectures 

In this study, new segmentation architectures, namely 

CycleGAN [22], DCLGAN [23], SimDCL [23], and 

SSimDCL [23], have been utilized as segmentation 

architectures and extensively explained. 

CycleGAN 

CycleGAN [22] is a Generative Adversarial Network 

(GAN) architecture that employs bidirectional 

transformation. It utilizes two separate generative networks, 

denoted as 𝐺: 𝑋 → 𝑌 and 𝐹: 𝑌 → 𝑋, to convert an input 

image from the 𝑋 domain into an output image in the 𝑌 

domain, and vice versa. In the training process of this 

architecture, instance normalization is applied in lieu of 

batch normalization, and the generator network's internal 

design incorporates ResNET blocks. Figure 6 provides a 

visual representation of the overall structure of CycleGAN. 

The loss function of CycleGAN consists of two distinct loss 

components: 1) cyclic consistency loss and 2) identity loss. 

Cyclic Consistency Loss: When computing the cyclic loss, 

transformations𝑋 → G(X) → 𝑌′ → F(𝑌′) → 𝑋̂ and 𝑌 →
F(Y) → 𝑋′ → G(𝑋′) → 𝑌̂ are executed, and the aim is to 

minimize the summation of the difference values 𝑋 − 𝑋̂ 

and 𝑌 − 𝑌̂ The calculation of the cyclic loss is detailed in 

Table 1. 

 

Figure 5. Identity Loss [24] 
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Identity Loss: When computing the transformations 𝑋 → 𝑋̂ 

and 𝑌 → 𝑌̂, intermediate outputs 𝑋 → 𝑌′ and 𝑌 → 𝑋′ are 

created. The purpose of these intermediate outputs is to 

closely resemble the original images. To perform this 

operation, it utilizes the 𝐹 and 𝐺 generative networks. 

Figure 5 illustrates the concept of identity loss. The identity 

loss is formulated as described in Table 1. 

Furthermore, the errors in the discriminator architectures 

within the generative networks (ℒ𝐺𝐴𝑁
𝐺  and ℒ𝐺𝐴𝑁

𝐹 )  are 

computed, contributing to the formation of the target 

function as detailed in Table 1 [22]. 

 

 

 

Figure 6. CycleGAN Architecture [24] 

DCLGAN and SimDCL 

DCLGAN [23] aims to enhance feature extraction between 

input and output image patches by utilizing two separate 

embedded systems to maximize mutual information. 

DCLGAN [23] seeks to maximize mutual information by 

improving feature extraction between input and output 

image patches through the use of two distinct embedded 

systems. The stability of this approach is enhanced through 

binary learning training. Certain design decisions for 

mutual learning have been assessed. In the implementation 

of the PatchNCE loss. The removal of RGB pixels 

corresponding to tiny patches has led to enhanced results. It 

has been demonstrated that enforcing cycle consistency is 

unnecessary. SimDCL [23] is a variant of DCLGAN that 

effectively mitigates mode collapse. 

DCLGAN utilizes adversarial loss, identity loss, and patch-

wise noise-contrastive estimation (PatchNCE) loss as its 

loss components. Furthermore, SimDCL incorporates 

similarity loss (ℒ𝑠𝑖𝑚) to prevent mode collapse. The 

essential target function for DCLGAN is presented in Table 

1. 

A similarity loss has been integrated into the target function 

of DCLGAN, leading to the name SimDCL. In this context, 

"sim" signifies the similarity loss, while "DCL" signifies 

binary comparative learning. SimDCL incorporates this 

similarity loss (ℒ𝑠𝑖𝑚)alongside the existing loss functions to 

mitigate mode collapse 

Similarity loss: In essence, images originating from the 

same domain exhibit certain resemblances. These images 

may possess distinct semantics but still exhibit a common 

stylistic element. In binary learning, there is one genuine 

and one synthetic image within the same field. There are 

two domains, denoted as 𝑋 and 𝑌. In brief, the architecture 

comprises a total of two genuine and two synthetic images.  

Utilizing a similarity loss on deep features promotes a 

resemblance between the generated images and real images 

at the deep feature level. This, in turn, makes the generated 

images more lifelike." In Table 1, the target function for 

SimDCL is provided. Figure 7 depicts the DCLGAN and 

SimDCL architectures. 

SSimDCL 

SSimDCL [24] utilizes two embedded systems To improve 

mutual information. In place of using unmatched images 

during the training process, matched images are employed. 

The objective is to transform the architecture into a 

supervised and matched state. To accomplish this, an 𝐿1 

metric is introduced between real and generated images 

within the SSimDCL framework. 

SSimDCL [24] employs adversarial loss, identity loss, and 

patch-wise noise-contrastive estimation (PatchNCE) loss, 

which is also applied in the CUT method, as loss functions. 

It also incorporates a similarity loss (ℒ𝑠𝑖𝑚), similar to 

SimDCL, to mitigate mode collapse. Moreover, in contrast 

to other techniques, it includes an 𝐿1loss to measure the 

difference between real and generated images. 

When looking at the training results of the SSimDCL 

method, it is observed that the identity results in higher-

resolution generated images compared to real images [24]. 

The method that is transformed into supervised learning and 

works on matched images closely resembles real images.  

𝐋𝟏 loss: In order to add a more supervised aspect to the 

unsupervised system, it is computed between the genuine 

image and the generated image. The specific calculations 
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for the 𝐿1 loss can be found in Table 1. The target function 

for the SSimDCL method is also presented in Table 1. 

Fig. 8 illustrates the architecture of SSimDCL. SSimDCL 

results in less pixel loss and higher resolution in the images 

generated with  ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) loss. The SSimDCL method 

has been employed to create a new dataset using the images 

generated with ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) loss. 

 

Figure 7.  DCLGAN and SimDCL architecture [24]

 

Figure 8.  SSimDCL architecture[24] 
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Table 1. GAN Methos and Target Function 

GAN methods Target Function 

CYCLEGAN [22] ℒ𝑐𝑦𝑐 = |𝑋 − 𝑋̂| + |𝑌 − 𝑌̂| 

ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝐿1(𝐺(𝑌) − 𝑌) + 𝐿1(𝐹(𝑋) − 𝑋) 

𝐺∗, 𝐹∗ =  𝑎𝑟𝑔𝑚𝑖𝑛
𝐺,𝐹

𝑚𝑎𝑥
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) 

=  ℒ𝐺𝐴𝑁
𝐺 (𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒ𝐺𝐴𝑁

𝐹 (𝐹, 𝐷𝑋, 𝑌, 𝑋) 

+𝜆 (ℒ𝑐𝑦𝑐(𝐺, 𝐹, 𝑋, 𝑌) + ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹, 𝑋, 𝑌)) 

DCLGAN [23] 𝐺∗, 𝐹∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺,𝐹

𝑚𝑎𝑥
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌 , 𝐻𝑋, 𝐻𝑌)

= 𝜆𝐺𝐴𝑁(ℒ𝐺𝐴𝑁
𝐺 (𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒ𝐺𝐴𝑁

𝐹 (𝐹, 𝐷𝑋, 𝑌, 𝑋))

+ 𝜆𝑁𝐶𝐸 (ℒ𝑃𝑎𝑡𝑐ℎ𝑁𝐶𝐸𝑋
(𝐺, 𝐻𝑋 , 𝐻𝑌, 𝑋)

+ ℒ𝑃𝑎𝑡𝑐ℎ𝑁𝐶𝐸𝑌
(𝐹, 𝐻𝑋, 𝐻𝑌 , 𝑌))

+ 𝜆𝑖𝑑𝑡(ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹)) 

SimDCL [23] 𝐺∗, 𝐹∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺,𝐹

𝑚𝑎𝑥
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌 , 𝐻𝑋, 𝐻𝑌)

= 𝜆𝐺𝐴𝑁(ℒ𝐺𝐴𝑁
𝐺 (𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒ𝐺𝐴𝑁

𝐹 (𝐹, 𝐷𝑋, 𝑌, 𝑋))

+ 𝜆𝑁𝐶𝐸 (ℒ𝑃𝑎𝑡𝑐ℎ𝑁𝐶𝐸𝑋
(𝐺, 𝐻𝑋 , 𝐻𝑌, 𝑋)

+ ℒ𝑃𝑎𝑡𝑐ℎ𝑁𝐶𝐸𝑌
(𝐹, 𝐻𝑋, 𝐻𝑌 , 𝑌))

+ 𝜆𝑠𝑖𝑚ℒ𝑠𝑖𝑚(𝐺, 𝐹, 𝐻𝑋, 𝐻𝑌 , 𝐻𝑥𝑟 , 𝐻𝑥𝑓 , 𝐻𝑦𝑟 , 𝐻𝑦𝑓)

+ 𝜆𝑖𝑑𝑡ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) 

SSimDCL [24] 𝐺∗, 𝐹∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺,𝐹

𝑚𝑎𝑥
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌 , 𝐻𝑋, 𝐻𝑌)

= 𝜆𝐺𝐴𝑁(ℒ𝐺𝐴𝑁
𝐺 (𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒ𝐺𝐴𝑁

𝐹 (𝐹, 𝐷𝑋, 𝑌, 𝑋))

+ 𝜆𝑁𝐶𝐸 (ℒ𝑃𝑎𝑡𝑐ℎ𝑁𝐶𝐸𝑋
(𝐺, 𝐻𝑋 , 𝐻𝑌, 𝑋)

+ 𝜆𝑁𝐶𝐸ℒ𝑃𝑎𝑡𝑐ℎ𝑁𝐶𝐸𝑌
(𝐹, 𝐻𝑋, 𝐻𝑌 , 𝑌))

+ 𝜆𝑠𝑖𝑚ℒ𝑠𝑖𝑚(𝐺, 𝐹, 𝐻𝑋, 𝐻𝑌 , 𝐻𝑥𝑟 , 𝐻𝑥𝑓 , 𝐻𝑦𝑟 , 𝐻𝑦𝑓)           

+ 𝜆𝑖𝑑𝑡 (ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) +  ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹, 𝑋, 𝑌)) 

Here 𝜆𝐺𝐴𝑁 = 1, 𝜆𝑁𝐶𝐸 = 2 and 𝜆𝑠𝑖𝑚 = 10 and 𝜆𝑖𝑑𝑡 = 1 are the hyperparameters used in the method. 

Image Quality Metric 

Inception Distance (FID) [26] assesses the similarity 

between the distribution of real images and that of generated 

images.  

Kernel Inception Distance (KID) [27] is akin to FID but 

relies on the Mean Squared Error (MSE) between the 

generated and genuine images. KID offers an advantage 

over FID as it incorporates the ReLU activation function. 

Feature Similarity Index Measurement (FSIM) [28] 

compares the phase consistency and gradient magnitude 

features of image pairs. 

The Structural Similarity Index Metric (SSIM) [29] uses 

several simple statistical moments such as the mean (μ) and 

standard deviation (σ) of image pairs to obtain a similarity 

score. 

Peak Signal-to-Noise Ratio (PSNR) [30] is the prevailing 

objective measurement for assessing the quality of image 

signals. However, PSNR values do not correlate well with 

perceived image quality due to the complex, highly 

nonlinear nature of the human visual system. 

Structure Co-Occurrence Texture (SCOOT) [31] uses the 

Scoot metric to measure the similarity between real and 

synthesized images. SCOOT provides results that are very 

close to human perception. It systematically evaluates 

different texture-based/edge-based features in the Scoot 

architecture. 

In terms of measurement metrics, higher values indicate 

better results for SCOOT [31], FSIM [28], SSIM [29], and 

PSNR [30]. For FID [26] and KID [27], lower values 

indicate better results. 
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Application Environment and Experimental Setup  

The application was trained on an NVIDIA® GeForce® 

RTX 4060 Max-Performance 8GB GDDR6 128-Bit DX12 

graphics card with a power of 115 watts + 25 watts for 

Dynamic Boost 2.0. The system also used an Intel® Raptor 

Lake Core™ i7 processor. 

Work has been conducted on the Python programming 

language using PyCharm and Anaconda IDEs. Within the 

environment, Python 3.7 and the following libraries have 

been utilized: torch, torchvision, dominate, visdom, 

packaging, GPUtil, scipy, Pillow, and numpy. 

All the methods were run in a Python environment with 300 

iterations on a computer with an 8 GB GPU. The 

measurement metrics used in the evaluation included the 

classic GAN methods FID [26] and KID [27], and the 

traditional method FSIM [28], SSIM [29], PSNR [30], 

SCOOT [31]. 

For training GAN methods, the settings of DCLGAN [23] 

were used as a reference. The hyperparameters used in these 

settings are shown in Table 2. The training process utilized 

the Adam optimization method [32]. The generative 

network was based on ResNet [33], and a PatchGAN [34] 

discriminator was used. Semantic normalization was also 

applied. 

Table 2. Training Details 

 𝜷𝟏 𝜷𝟐 Epoch Lr Batch Size Image Size 

Training 

hyperparameter 

0.5 0.999 300 0.0001 1 256 × 256 

 

Experimental Results 

Fig. 9 displays the visual results of CycleGAN, DCLGAN, 

SimDCL, and SSimDCL methods in the context of iSAID 

semantic segmentation. When comparing the visual output 

results of semantic segmentation on iSAID images, it is 

observed that SimDCL and SSimDCL methods provide the 

best results. 

 

Figure 9. Visual results of the methods for semantic segmentation 
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Figure 10. iSAID image semantic segmentation analysis according to the methods. Original image size                  

(256 × 256 × 3). , Zoomed-in view of the colored regions shown in first column. 

 

Table 3. Image Similarity Metrics Results 

 FID↓ KID↓ SCOOT↑ PSNR↑ SSIM↑ FSIM↑ 

CYCLEGAN[22] 202.33857 0.16795 0.53218 0.83408 35.7062 0.7751 

DCLGAN [23] 164.83025 0.12890 0.5980 0.85089 37.5326 0.82128 

SimDCL [23] 149.82306 0.10215 0.60142 0.85224 37.4747 0.82429 

SSimDCL [24] 132.62071 0.07825 0.6406 0.85973 37.862 0.82725 

Table 3 shows the bold font indicating the first successful 

method, and the underlined font indicating the second 

successful method. Metrically, the lower the FID and KID, 

the higher the performance rate. Among the examined 

methods, the SSimDCL method achieved the highest 

success with the lowest FID of 132.32071 and KID of 

0.07825; the SimDCL method secured the second position 

with FID of 149.82306 and KID of 0.10215, while the 

CycleGAN method was observed to be the least successful 

with FID of 202.33857 and KID of 0.16795. 

In terms of SCOOT, PSNR, SSIM, and FSIM, the higher 

the values, the better the performance. Among the examined 

methods, the SSimDCL method ranked first with the lowest 
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0.6406 SCOOT, 0.85973 PSNR, 37.862 SSIM, and 0.82725 

FSIM; the SimDCL method secured the second position 

with 0.60142 SCOOT, 0.85224 PSNR, 37.4747 SSIM, and 

0.82429 FSIM. The CycleGAN method, with 0.53218 

SCOOT, 0.83408 PSNR, 35.7062 SSIM, and 0.7751 FSIM, 

was observed to be the least successful among the examined 

methods. 

When examining Table 3, it can be observed that according 

to the image similarity metrics FID, KID, SCOOT, PSNR, 

SSIM, and FSIM, the method most similar to the Ground 

Truth image is SSimDCL (indicated in bold). SimDCL 

(indicated with an underline) follows in the second place, 

and the DCLGAN method ranks third. When looking at the 

image measurement metric results, the CycleGAN method 

appears to be less successful compared to the other 

methods. 

Discussion and Conclusion 

The main subject of this article is to compare the efficiency 

of methods that initially use the CycleGAN method, which 

is commonly used in the problem of image semantic 

segmentation. The CycleGAN method has been modified to 

develop new GAN architectures, namely DCLGAN and 

SimDCL. The SSimDCL method is derived from the 

SimDCL method. The iSAID dataset is used for evaluating 

the visual semantic segmentation efficiency of CycleGAN, 

DCLGAN, SimDCL, and SSimDCL methods. 

When looking at the metric results, the SSimDCL method 

ranks first with 132.62071 FID, 0.07825 KID, 0.6406 

SCOOT, 0.85973 PSNR, 37.862 FSIM, and 0.82725 SSIM; 

the SimDCL method shows the second-best performance 

with 149.82306 FID, 0.10215 KID, 0.60142 SCOOT, 

0.85224 PSNR, 37.4747 FSIM, and 0.82429 SSIM. The 

CycleGAN method, on the other hand, ranks last among the 

applied methods with results of 202.33857 FID, 0.16795 

KID, 0.53218 SCOOT, 0.83408 PSNR, 35.7062 FSIM, and 

0.7751 SSIM. 

When examining the visual results of the compared 

methods, it is observed that SimDCL and SSimDCL 

methods achieved the best results. CycleGAN, on the other 

hand, was found to be less effective in segmentation 

compared to the other methods. Looking at the results with 

image evaluation metrics in Table 3, it can be observed that 

SSimDCL and SimDCL methods have produced the best 

results, in that order. According to Table 3, it can be 

observed that the CycleGAN method received lower metric 

results compared to the other methods. As a result of this 

study, it can be said that SSimDCL and SimDCL can be 

used for instance segmentation and achieve more efficient 

results. 
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