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ABSTRACT  

In this study, the performance of different deep learning algorithms to predict silver prices was 

evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the 

prediction process, as well as a new hybrid model based on combining these models. Each algorithm 

was trained on historical silver price data and compared its performance in price prediction using 

this data. This approach aims to achieve more comprehensive and accurate forecasts by combining 

the strengths of each model. It also makes a unique contribution to the literature in this area by 

addressing a specialized area such as the silver market, which is often neglected in financial 

forecasting. The study presents an innovative approach to financial forecasting and analysis 

methodologies, highlighting the advantages and potential of deep learning models for time-series 

data processing. The results compare the ability of these algorithms to analyze silver prices based 

on historical data only and to assess past trends. The study showed that these algorithms exhibit 

different performances in analyzing historical data. In conclusion, this study compared the 

performance of different deep learning algorithms for predicting silver prices based on historical 

data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. 

These results can provide guidance to researchers working on financial analysis and forecasting. 

MAKALE  BİLGİSİ  

Makale Geçmişi  

Başvuru 13 Aralık 2023 

Kabul 23 Aralık 2023 

Yayın 8 Şubat 2024 

  

Makale Türü Araştırma Makalesi 

 

Anahtar Kelimeler 

 

Gümüş Fiyat Tahmini,  

Derin Öğrenme,  

LSTM,  

CNN-LSTM-GRU,  

Finansal Analiz. 

ÖZ  

Bu çalışmada, gümüş fiyatlarını tahmin etmek amacıyla farklı derin öğrenme algoritmalarının 

performansını değerlendirilmiştir. Tahmin işlemi için CNN, LSTM ve GRU gibi derin öğrenme 

modellerinin kullanımı ile birlikte bu modellerin birleştirilmesi üzerine yeni bir hibrit model üzerine 

odaklanılmıştır. Her bir algoritma, geçmiş gümüş fiyat verileri üzerinde eğitilmiş ve bu verileri 

kullanarak fiyat tahminlerindeki performansları karşılaştırılmıştır. Bu yaklaşım, her bir modelin 

güçlü yönlerini birleştirerek daha kapsamlı ve hassas tahminler elde etmeyi hedefler. Ayrıca, 

finansal tahminlerde sıklıkla göz ardı edilen gümüş piyasası gibi özel bir alanı ele alarak, bu alandaki 

literatüre özgün bir katkı sağlamaktadır. Çalışma, zaman serisi verilerinin işlenmesi konusunda derin 

öğrenme modellerinin avantajlarını ve potansiyelini vurgulayarak, finansal tahmin ve analiz 

metodolojilerinde yenilikçi bir yaklaşım sunmaktadır. Sonuçlar, bu algoritmaların sadece geçmiş 

verilere dayalı olarak gümüş fiyatlarını analiz etme ve geçmiş trendleri değerlendirme yeteneklerini 

karşılaştırmıştır. Çalışma, bu algoritmaların geçmiş verilere dayalı analizlerde farklı performanslar 

sergilediğini göstermiştir. Sonuç olarak, bu çalışma, gümüş fiyatlarının geçmiş verileri üzerinden 

tahmin edilmesi için farklı derin öğrenme algoritmalarının performansını karşılaştırmış ve CNN-

LSTM-GRU hibrit modelinin daha iyi tahminler yapma potansiyeli taşıdığını ortaya koymuştur. Bu 

sonuçlar, finansal analiz ve tahmin konularında çalışan araştırmacılara yol gösterici olabilir. 

  

1. Introduction  

One unique metal that is very significant to economies is 

silver. The metal's industrial use and strong demand as a 

jewelry metal make trade in this metal a crucial area to 

concentrate on. A lot of investors hoard silver as a hedge 

against an impending economic collapse, and the volume is 

high. The pandemic has had a significant negative impact 

on the financial sector, and silver has become more and 

more popular as an investment in recent years. A major 

factor influencing economic development is the demand for 
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silver and how quickly its prices change. All the same, silver 

investments have evolved into a tool for financial 

management, as investors have begun to recognize of late. 

Silver continues to be a significant player in the financial 

markets and often serves as both an industrial metal and an 

investment product. Accurate silver price forecasting is 

crucial for economic growth, nevertheless, because of the 

recent economic impact of the pandemic and fluctuations in 

silver prices (Goel et al., 2022: 390). 

The price of silver is influenced by a number of variables, 

including the enactment of new laws, the health of the world 

economy, political events, investor psychology, etc. With 

these factors influencing price swings, it is difficult to 

determine the price of silver with any degree of precision. 

Forecasting time series data has been done using 

conventional machine learning techniques including genetic 

algorithms, decision trees, and support vector machines. All 

of these methods, however, have drawbacks, including 

inadequate handling of unique values in time series data and 

inadequate non-linear data fitting capabilities. An 

increasing number of deep learning techniques are being 

used for time series forecasting as technology advances. 

The alterations in nonlinear time series data may be more 

effectively accommodated by deep learning algorithms 

(Wang et al., 2023: 1-2). 

Silver market analysis is an important area of financial 

forecasting, and deep learning (DL) models are receiving 

increasing attention in this field. Existing literature 

addresses the use of DL models in a variety of financial 

applications, including exchange rate, stock market, and oil 

price forecasting. In particular, models such as LSTM and 

CNN are popularly used in such forecasts, and complex 

neural networks have the potential to achieve high accuracy. 

By focusing on the application of DL models for price 

forecasting in the silver market, this study aims to extend 

the existing work in this area and provide a more in-depth 

analysis. In this way, we aim to better understand the 

potential of deep learning in financial forecasting and 

analysis. 

The deep learning algorithms used in this study have 

different capabilities in analyzing and predicting the silver 

market, and each makes a unique contribution. CNNs are 

powerful at recognizing complex data patterns because they 

have the capacity to automatically learn meaningful features 

from high-dimensional data. On the other hand, RNN 

models such as LSTM and GRU are effective in modeling 

sequential features of time series data because they can 

capture dependencies over time and learn relationships 

within the data stream. These features make both types of 

models suitable for use in time series forecasting, but each 

offers advantages in different ways. CNNs are effective in 

recognizing and learning complex patterns within the data, 

while LSTM and GRU are powerful in modeling time 

dependencies between the data (Wibawa et al., 2022). 

Therefore, this study focuses on the combination of these 

three algorithms and explores how each of them plays 

different roles in analyzing the silver market. The aim of 

this approach is to utilize the complementary features of the 

algorithms to obtain more comprehensive and accurate 

forecasts. This information will provide readers with a 

better understanding of whether these algorithms are 

alternatives to each other throughout the paper. 

The main objective of this study is to objectively compare 

the performance of various deep learning algorithms using 

historical silver price data. There are many reasons for using 

deep learning algorithms in this study. While traditional 

methods such as XGBoost offer fast training times and 

efficient performances, deep learning models are better at 

modeling advanced structures, especially time series data 

and sequence data. Deep learning methods are generally 

better at time series prediction than machine learning 

methods. They can more effectively model the complex 

structures of time series, which improves forecasting 

performance (Elsayed et al., 2021; Lara-Benítez et al., 

2021). For these reasons, deep learning algorithms are 

preferred in this study. However, evaluations based on 

historical data show how well each algorithm evaluates 

previous patterns. The study uses daily data on silver prices 

per gram.  This data is used to evaluate how well deep 

learning systems such as CNN, LSTM, and GRU predict 

these data. The paper also proposes a new hybrid CNN-

LSTM-GRU model. This model outperforms other 

algorithms in terms of silver price prediction. For academics 

and investors interested in understanding the complexity of 

silver prices and improving their ability to predict future 

price fluctuations, these findings provide an important 

discovery. 

2. Literature Review 

In a research, Vidya and Hari (2020) stress how crucial it is 

to predict the trajectory of gold prices, beginning with the 

fact that gold is one of the greatest investment possibilities 

and is always in demand. Planning for finances and 

investments requires these estimates since gold prices are 

not linear. An exponential curve may be used to represent 

changes in the price of gold. Convolutional neural networks 

(CNN) are among the finest methods for resolving the 

nonlinear features of data; furthermore, recurrent neural 

networks (RNN) are the most appropriate for time series 

forecasting and assessment. The suggested model is among 

the most effective techniques for financial forecasting, 

according to the findings of the research conducted using 

the World Gold Council's dataset. 

Kong et al. (2021) were able to more accurately portray 

current data variations than the MSE approach by 

employing the k-AMSE parameter to indicate the price 

fluctuation of a spot sample. Data on Amazon spot prices 

going back 90 days was retrieved from the Amazon Cloud 

and the researchers analyzed the resulting price dispersion. 

Next, a prediction model based on the GRU network is 

presented, and the factors that affect price volatility are 

discussed. The RMSE is used to evaluate the proposed 

approach in comparison to other methods. The experimental 

results show that the GRU network method can achieve 

higher accuracy (1.58e-3%). 

Hamayel and Owda (2021) proposed three separate RNN 

techniques for forecasting the prices of three various 

cryptocurrencies, including Ethereum (ETH), Litecoin 

(LTC), and Bitcoin (BTC). Models employ the MAPE 

statistic to make extremely accurate projections. The results 

demonstrated that, across all bitcoin kinds, the GRU model 

performed better than the other two models, LSTM and bi-

LSTM. GRU was regarded as the best algorithm as a result. 

For Bitcoin, Ethereum, and Litecoin, GRU's forecasts were 

the most accurate (0.2454%, 0.8267%, and 0.2116% 
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MAPE, respectively). The lowest performance in predicting 

Bitcoin, Ethereum, and Litecoin (MAPE percentages: 

5.990%, 6.85%, and 2.332%, respectively) was achieved by 

the Bi-LSTM algorithm. In general, the study's prediction 

models produced fair estimates of future cryptocurrency 

values. 

Due to their importance in both the financial and industrial 

sectors, Lin et al. (2022) set out to develop a method to 

reliably predict the price of precious metals. In order to 

increase the accuracy of price predictions for precious 

metals, this research integrates a long short-term memory 

neural network (LSTM) with the modified ensemble 

empirical mode decomposition (MEEMD) method. 

According to studies using multiscale permutation entropy 

(MPE), MEEMD has a greater decomposition effect than 

ensemble empirical mode decomposition (EEMD). After 

feeding each IMF into the LSTM that MEEMD had 

generated, a forecast was created. The aggregate forecast 

was then calculated by aggregating the individual IMF 

forecasts. When compared to traditional forecasting models 

such as those based on multilayer perceptron neural 

networks (MLP), support vector regression (SVR), and 

super learners (SL), MEEMD-LSTM scored better in both 

single- and multi-step forward predictions. The multi-

horizon model confidence set (MCS) test provides robust 

and statistical evidence that MEEMD-LSTM has the best 

forecasting performance. This research also shown that the 

model's predictive accuracy increases throughout a range of 

training-to-test set ratios and stages of the economic cycle. 

The research by Malik et al. (2022) tackles a persistent 

pattern in which financial trading in the stock market is 

determined by time series forecasting. Value forecasting is 

done in the research using deep learning methods like 

LSTM. The long-term reliance issues have been resolved by 

the LSTM approach. Additionally, the unit cell and 

forgetting gate shielded the LSTM from gradient fading and 

made it possible for the algorithms to efficiently store and 

analyze over a thousand data points. The actual stock values 

and the anticipated stock values are shown in the 

experimental analysis findings. 

Goel et al. (2022) conducted a study to determine the 

efficacy of machine learning models in predicting the prices 

of gold and silver on the Indian market. This prompted the 

exploration of CNN and CNN-RNN-based hybrid machine 

learning models. The experimental phases of the project 

used daily trading data from January 2021 through August 

2022. The MAPE was used to measure the quality of the 

models. The results showed that the RNN model performed 

best only when predicting the price of gold, whereas the 

other models performed almost as well. 

In their research, Patel et al. (2022) defined 

cryptocurrencies as digital trade instruments that are 

secured by secure hashing algorithms (SHA-256 and MD5) 

and function in a decentralized way. Since their 

introduction, the values of cryptocurrencies have fluctuated 

greatly and seen sharp increases, particularly during the 

COVID-19 epidemic. Because of this, it has grown in 

popularity as a choice among investors who want to get big 

profits quickly. Due of these significant price swings, 

investors and experts have begun to forecast bitcoin values. 

Various machine learning and deep learning algorithms, 

including as GRU, LSTM, and ARIMAX, have been 

applied to the task of forecasting cryptocurrency prices and 

investigating the factors that affect them. Though the 

research now in publication concentrates on predicting 

cryptocurrency values, it often overlooks the coin's 

dependency on other cryptocurrencies. This article presents 

a paradigm for predicting cryptocurrency prices by taking 

Dash Coin's reliance on other cryptocurrencies, such 

Bitcoin and Litecoin, into account. This method takes into 

consideration the hierarchical relationship between various 

cryptocurrencies in order to attain improved forecast 

accuracy. The expected price of the Dash currency is c to 

demonstrate this idea. This method takes into consideration 

the hierarchical relationship between various 

cryptocurrencies in order to attain improved forecast 

accuracy. In order to demonstrate this idea, the price 

prediction of Dash coins is taken into consideration. The 

findings demonstrate that the suggested model 

accomplishes price predictions with minimal loss and high 

accuracy. 

A number of machine learning models, including as ANN, 

LSTM, and SVR, were studied by Yang et al. (2022) in 

order to forecast gold prices based on commodities, 

conventional indices, emergent indicators, and gold history 

time series. Models for predicting gold prices are built using 

ANN, LSTM, and SVR, three machine learning techniques. 

The research uses a time series that begins on January 1, 

2017 and ends on December 31, 2020 as its dataset. It covers 

the S&P 500 and the DJI, along with Bitcoin and Ethereum, 

silver and crude oil, the USD index (which tracks the value 

of the US Dollar in comparison to the Euro) and gold price 

data (both historical and volatility). MAE, RMSE, and 

MAPE are used as measures of effectiveness. In the first 

step, we compared the three models side by side. In the 

second part, we see an assessment of how the models are 

affected by cryptocurrency. The findings of the study 

indicate that the Support Vector Regression (SVR) model 

had superior performance compared to the other two 

models. Furthermore, the inclusion of supplementary data 

pertaining to cryptocurrencies had a beneficial effect on all 

three models. 

Li et al. (2023) selected 11 influencing factors to be used as 

explanatory variables for the fluctuations in copper prices 

after analyzing the qualitative relationships between the 

variations in copper prices and variables like supply and 

demand, energy costs, alternative metals, global 

macroeconomic conditions, and national policies. These 

variables are merged with monthly time series data for 

copper price forecasts to create a two-dimensional 

multivariate time series that is integrated into a CNN-LSTM 

network. Experimental results show that the suggested 

strategy performs better than other existing techniques 

because to its ability to extract features on both the temporal 

side of LSTMs and the attribute space side of CNNs. 

Rao et al. (2023) mentioned that industry-specific stock 

price swings are a big cause for worry in the market and that 

as more players enter the market, the capacity to correctly 

forecast stock price movements becomes increasingly 

valuable. The authors claim that historically, a great deal of 

study has been done on the subject of stock market 

forecasting utilizing machine learning techniques and 

technologies. Interesting features that contribute to the 

complexity of this modeling include time dependency, 
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volatility, and similar complicated relationships. The 

approach to predicting stock prices suggested in this study 

uses a hybrid technique based on deep learning to get 

around this problem. Following input data processing, 

preprocessing is carried out to increase accuracy before 

MPSOA characteristics are chosen. Lastly, the MC-GRU 

model training employs this technique. The suggested 

approach outperforms the CNN and GRU models in terms 

of performance. 

According to a study by Sulistio et al. (2023), one way to 

reduce the risks involved in stock investing—which is 

especially popular among inexperienced investors—is to 

use deep learning to estimate stock closing prices. When six 

different deep learning algorithms were compared for their 

ability to predict stock closing prices, the CNN-LSTM-

GRU hybrid algorithm combination fared better than the 

other methods. The RMSE went down by 1,100 units, or 

14%, the MAE went down by 0.798 units, or 13%, and the 

R squared went up by 0.957 units, or 3.9%, as measured by 

these metrics. For forecasting energy stocks on the 

Indonesian Stock Exchange, in particular, the authors 

believe that the CNN-LSTM-GRU combination is 

preferable than employing a single algorithm. 

Chen et al. (2023) did a research to forecast and explain the 

factors influencing the Bitcoin price, with the goal of 

obtaining the Bitcoin price for the next day using a highly 

accurate algorithm model. The authors note that there is a 

substantial body of earlier work on the issue of Bitcoin price 

forecasting research and that the two most prevalent 

techniques are the ARMA model and the LSTM algorithm. 

Even though random forest regression produces predictions 

with lower RMSE and MAPE than LSTM, the Diebold-

Mariano test is unable to show that random forest regression 

predicts more accurately than LSTM. Random forest 

regression was also used to obtain shifts in the factors that 

determined the Bitcoin price throughout the various time 

periods. Between 2015 and 2018, the price of Bitcoin was 

affected by the price of oil, the price of Ethereum, and the 

three major NASDAQ, DJI, and S&P500 indexes. Two 

important variables since 2018 have been the price of ETH 

and the JP225 index of Japanese equities. In terms of the 

relationship between the accuracy and the number of 

periods in which the model incorporates explanatory 

variables, the model that uses a single lag to anticipate the 

price of Bitcoin the next day has the highest prediction 

accuracy. 

In this literature review, it is important to explain in detail 

the limitations and improvements of the methods used by 

the studies described for price forecasting. Vidya and Hari 

(2020) on gold prices and Kong et al. (2021) on Amazon 

spot prices focus on specific datasets. However, these 

studies lack generalizability across different market 

conditions and data types. This study aims to extend the 

applicability of deep learning models to more diverse 

datasets and market conditions. However, Hamayel and 

Owda's (2021) study on cryptocurrencies and Lin et al.’s 

(2022) study on precious metals illustrate limitations in 

terms of the complexity and performance of specific 

models. While the studies evaluate the performance of a 

single model, they ignore the potential advantages of 

combining different models. In this study, the focus is on 

exploring the synergies that can be achieved by hybridizing 

these models. In the existing literature, the focus is often on 

a particular algorithm or model, but the potential of 

combining these models and hybrid approaches has not 

been sufficiently explored. Moreover, the inability to 

adequately model the complexity of time series data and 

market fluctuations is a common shortcoming. This paper 

aims to fill these gaps and presents an advanced hybrid 

model that addresses the challenges that existing models in 

the literature cannot overcome. 

3. Proposed Methodology 

Daily silver price forecasts were generated using four 

procedures: data initialization, preprocessing, the 

forecasting model, and assessment. Investing.com was 

mined for its XAGg/TRY gram silver price data to kick off 

the data cleaning procedure. There are a total of 1645 

trading days' worth of information here, spanning the 

previous six years (01.08.2017-29.09.2023). The Excel file 

format was used to get these records. The silver market 

makes use of the closing price and the starting price as 

defining criteria. A dataset of 1D array data frame type was 

created by reading and merging the excel files. 

The Python programming language is used for the 

estimation process, and popular deep learning libraries such 

as numpy, pandas, keras, sklearn, tensorflow, and 

matplotlib are imported. This information will help readers 

understand how the algorithms are implemented and bring 

more transparency to the methodology. During 

preprocessing, a dataset of input pricing data is created by 

converting the silver data from the dataname type to the 

numpy type. In addition, MinMaxScaler (Equation 1) is 

used to normalize the dataset, making it possible to rapidly 

compute the value of all features by transforming them to a 

common scale. After data standardization, the data set was 

divided into two parts: a 70% training set and a 30% test set. 

In Vrigazova's (2021) research, it was suggested that 

splitting the data set in the ratio of 70/30 can further improve 

model performance. Accordingly, this ratio was preferred 

for data splitting. A specific random state (random_state) 

was used to split the dataset. The "random_state" is used to 

ensure that the dataset is randomly partitioned in the same 

way each time. This guarantees repeatability. In other 

words, the same data split is produced each time using the 

same “random_state” value. When testing hyperparameter 

settings or evaluating the performance of the model, this 

preserves the comparability of the findings. Given that the 

prediction performance of different models will be 

compared in this study, it is imperative to ensure that the 

results are comparable by using the same data split. This 

will make it possible to understand which model performs 

better. Throughout the optimization process, the evaluation 

dataset was used to compare the prediction errors 

introduced by the deep learning algorithm models. The 

research concludes by estimating and evaluating the 

performance of the model using the test dataset. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

The calculation of the CNN layer is the first step in the 

training process that underlies the prediction process, which 

makes use of a sliding window dataset. The data is 

processed via a convolution layer, then a pooling layer, in 

that order. After the input dataset has been processed by the 

CNN, it is sent to the LSTM layer, where input gates look 
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for updated cell values. After the output gate has checked 

the information included in the cell, the data then travels via 

the forget gates, which examine the information contained 

in the cell to find constant values. Finally, the LSTM layer 

produces the data. The information then passes via a reset 

gate before entering the GRU layer, where it will be merged 

with previously received information. The information will 

next go via an update gate, which will calculate how much 

previous data must be kept. In addition, the GRU layer 

output data will be produced by this gate. The information 

will then go via each interconnected layer, culminating in a 

predicted value for one gram of silver. 

Evaluating several approaches to forecasting the closing 

price of a gram of silver yields useful information. In this 

study, a technical evaluation is made by comparing the 

training and testing performance of traditional CNNs, 

LSTMs, GRUs, and a hybrid model consisting of all three. 

The error rate of the prediction outcomes derived from these 

models was computed using MAPE, RMSE, MAE, R2, 

MASE, and SMAPE. Equations 2, 3, 4, 5, 6, and 7 are a few 

examples of formulas that may be used to compute this 

statistical data. 

MAPE =
1

N
 ∑

|Xî−Xi|

Xi

N
i=1   (2) 

RMSE =  √
1

n
∑ (Xi − Xi)̂

2n
i  (3) 

MAE =  
1

n
 ∑ |Xi − Xî|

n
i  (4) 

R2 = 1 −
∑ (yi−ŷi)2

i

∑ (yi−μ)2
i

  (5) 

MASE =
∑ |𝐹𝑡−𝐴𝑡|𝑛

𝑡=1
𝑛

𝑛−1
∑ |𝐴𝑡−𝐴𝑡−1|𝑛

𝑡=2
 (6) 

𝑆𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

|𝐹𝑡−𝐴𝑡|

(|𝐴𝑡|+|𝐹𝑡|)/2

𝑛
𝑡=1  (7) 

The main motivation for using a combination of CNN, 

LSTM, and GRU algorithms in this study is the potential for 

stronger and more accurate forecasts by combining the 

unique advantages of each algorithm. "Hybrid Machine 

Learning Models for Gold and Silver Price Forecasting" by 

Goel et al. (2022) showed that hybrid models can 

outperform single models. However, in the work of Sulistio 

et al. (2023), the proposed hybrid model is a combination of 

CNN, LSTM, and GRU algorithms. This model was used in 

energy sector stock price forecasting and obtained superior 

results compared to the use of single algorithms. Moreover, 

the study also compared the combination of two hybrid 

models, CNN-GRU-LSTM and CNN-LSTM-GRU. As a 

result, the performance of the hybrid models is remarkable, 

especially the increase in R2 values. This indicates that the 

hybrid models better capture the datasets and increase their 

predictive power. In particular, the CNN-LSTM-GRU 

hybrid model significantly reduced the MAE and RMSE 

values and increased the R2 value.  These findings provide 

an important reference for the construction of the CNN-

LSTM-GRU hybrid model created in this study and support 

the methodology. The results of this study reinforce the 

results of this study. 

The CNN-LSTM-GRU ranking used in this study is based 

on the potential to make more accurate predictions by 

combining the strengths of each algorithm. CNN captures 

spatial features of the data; LSTM captures long-term 

dependencies; and GRU learns functions similar to LSTM 

quickly with fewer parameters. The combination of these 

three enables in-depth analysis of the data in both time and 

feature dimensions. An alternative ranking, LSTM-GRU-

CNN, could theoretically produce different results, but the 

ranking chosen in this study is the most appropriate because 

it can be thought of as prioritizing the power of CNN in 

feature extraction and then applying these features to time 

series analysis with LSTM and GRU. The effects of this 

ranking on performance are supported by the results in 

Sulistio et al. (2023) and are consistent with the results 

obtained in this study. In the next section of the paper, the 

models used for the forecasting process will be introduced. 

However, the hybrid approach used in this study provides 

the necessary depth and flexibility for complex and volatile 

data sets, such as the silver market. Despite the limited 

number of observations, this approach aims to more 

effectively model the complex patterns and time-series 

characteristics of the data set. Hybrid modeling approaches 

offer a deeper and more flexible analysis, especially for 

complex and volatile market data sets. For example, the 

combination of CNN and GRU can combine the serial 

dependence of financial time series and the correlation 

properties of different financial market time series in the 

same model. This approach improves explanatory ability 

and forecasting accuracy by extracting short-term attention 

features and the long-term effects of time series data. 

Hybrid models have the potential to provide more accurate 

and reliable forecasts, regardless of the size of the data set 

(Song et al., 2023). Therefore, the use of the hybrid model 

was considered an appropriate and effective methodology 

for such data sets. 

On the other hand, different hyperparameter optimization 

methods were used for all algorithms used in this study. The 

reason for not using a single optimization method for all 

algorithms is due to the need to optimize the different 

structural and functional properties of different algorithms. 

For example, the Bayesian optimization used in the study 

may be effective in certain situations, while for other 

algorithms, different optimization techniques (e.g., PSO or 

grid search) may be more appropriate. Using optimization 

methods that best meet the unique needs and structures of 

each algorithm plays a critical role in improving overall 

model performance and accuracy. The motivation for 

choosing Bayesian optimization for the CNN algorithm is 

important for two reasons. First, the time cost can be 

controlled and fixed according to the needs. Second, the 

balance of exploitation and exploration is well maintained 

compared to other existing models, making the search more 

effective (Zulfiqar et al., 2022). However, the manual 

selection of LSTM hyperparameters has a significant 

impact on the results. The prediction performance of models 

trained with different parameters varies greatly; therefore, it 

is very important to select appropriate model parameters 

(Xu et al., 2022). The particle swarm optimization method 

is used for the LSTM algorithm, and its success in time 

series forecasting is well known (Kumar et al., 2022; 

Pranolo et al., 2022; Xu et al., 2022). In addition, Brownlee 

(2020) examined the effectiveness of the Grid Search 

optimization method for the GRU algorithm in time series 

forecasting. The researcher described the development of a 

grid search test rig that can evaluate a set of 
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hyperparameters for different neural network models. This 

method involves splitting time series data into training and 

test sets, developing models that can handle time-varying 

data, and summarizing performance through repeated 

evaluation. This information provides evidence to support 

the claim that the grid search optimization method for the 

GRU model is effective in time series forecasting. In line 

with all this information, separate optimization methods 

were chosen for each algorithm. Lastly, the training of all 

models is carried out on a laptop computer with Intel Core 

i7-7700HG CPU, NVIDIA GeForce RTX 3050 4 GB 

graphics card and 16 GB RAM.  

3.1. Convolutional Neural Networks (CNN)  

The CNN model is reportedly trained using the Adam 

variation of the stochastic gradient descent optimization 

method, as stated by Hsieh et al. (2020). When training an 

Adam neural network, its parameters are optimized by 

reducing the loss function, which is a measure of how much 

predictions deviate from the actual data. Equation (8) may 

be used to determine that CNN employs the cross-entropy 

loss function J(x, y, θ). By reducing J(x, y, θ)  with regard to 

the set of network parameters, the network learns. 

 J(x, y, θ)  =  − ∑ xilogyi,
K
i=1    (8) 

Given a minibatch size of K, let's say that x and y stand for 

the truth and the predicted CNN output, respectively. The 

CNN's parameter set, which is as follows, was acquired 

through iteratively updating backpropagation training: 

θt ←  θt−1 − 
ηm̂t

√θt+ε
  (9) 

The values of m̂t and θt, which reflect the first-moment 

estimate with bias correction and the second-moment 

computation with bias adjustment, respectively, are very 

small constants. 

In this study, the Bayesian optimization hyperparameter 

algorithm and the Trainbr training algorithm were used to 

create the 2D CNN model. The CNN model consists of 

convolutional layer, MaxPooling Layer, flatten layer, and 

dense layer. 

The convolutional layer is a widely used layer, especially in 

image processing applications. This layer extracts features 

by making local connections to the input data. The 

convolution is done by scrolling over the entire input using 

a small window (kernel or filter). During each shift, an 

element-wise multiplication is performed between the data 

under the window and the filter, and the results are summed: 

𝑎𝑖𝑗
𝑙 = 𝜎(∑ ∑ 𝑊𝑚𝑛

𝑙 ∙ 𝑥(𝑖+𝑚)(𝑗+𝑛) + 𝑏𝑙)𝑁−1
𝑛=0

𝑀−1
𝑚=0  (10) 

Where, 𝑎𝑖𝑗
𝑙  is an element of the activation matrix in layer 𝑙. 

𝑊𝑚𝑛
𝑙  is an element of the weight matrix in layer 𝑙. 

𝑥(𝑖+𝑚)(𝑗+𝑛) is an element of the input matrix. 𝑏𝑙 is the bias 

in layer 𝑙, 𝜎 is the activation function, and 𝑀 × 𝑁 is the 

kernel (filter) dimensions. 

The MaxPooling layer is usually used after convolutional 

layers, and its purpose is to reduce the size of feature maps. 

This is done by taking the maximum value within a given 

window size. MaxPooling reduces the computational 

burden of the model while at the same time providing some 

resistance to overfitting. It also increases the robustness of 

the model to small displacements and transformations. 

𝑝𝑖𝑗 = 𝑚𝑎𝑥0≤𝑚<𝑀,0≤𝑛<𝑁𝑥(𝑖+𝑚)(𝑗+𝑛) (11) 

Where, 𝑝𝑖𝑗  is an element of the output of the pooling layer. 

𝑥(𝑖+𝑚)(𝑗+𝑛) is an element of the input matrix. 𝑀𝑥𝑁 are the 

pooling window dimensions. 

Flattening converts a multidimensional input into a one-

dimensional vector. For example, an input of size 

𝑚 × 𝑛 × 𝑘 is transformed into a vector of size 𝑚 × 𝑛 × 𝑘. 

A dense layer is an artificial neural network layer where 

each input is connected to each neuron of the layer. This 

layer combines information from previous layers to extract 

higher-level features. It is usually located in the final layers 

of neural networks and generates the outputs for tasks such 

as classification or regression. The dense layer multiplies 

the input vector by weights, adds bias, and passes it through 

an activation function. This process allows the network to 

learn complex functions. 

𝑎𝑙 = 𝜎(𝑊𝑙 ∙ 𝑎𝑙−1 + 𝑏𝑙) (12) 

Where 𝑎𝑙 is the activation vector in layer 𝑙 and "wl" is the 

weight matrix. 𝑎𝑙−1 is the activation vector of the previous 

layer. 𝑏𝑙 is the bias vector in layer 𝑙. 𝜎 is the activation 

function. 

Bayesian hyperparameter optimization is used in the CNN 

model. In Bayesian hyperparameter optimization, a prior 

distribution is first determined about the performance of the 

hyperparameters. This is an estimate of which values of the 

hyperparameters are likely to give good performance. The 

model is trained with the chosen set of hyperparameters, and 

the performance of the model (i.e., the error rate on the 

validation set) is measured. This new data point is added to 

the prior model, and the prior model is updated with this 

new observation. The updated model gives a probabilistic 

distribution of the performance of each combination of 

hyperparameters. This is known as the posterior 

distribution. Using the posterior distribution, the 

optimization process selects new sets of hyperparameters 

that can give the best result. This selection is usually done 

with Acquisition Functions (Doke et al., 2020).   

The model is based on Gaussian Process (GP) regression: 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (13) 

Where 𝑓(𝑥) is the function that models the performance of 

the hyperparameters, 𝑚(𝑥) is the mean function, and 

𝑘(𝑥, 𝑥′) is the kernel function. 

Flow Functions: 

Expected Improvement (EI): 

𝐸𝐼(𝑥) = Ε[max (𝑓(𝑥) − 𝑓(𝑥+), 0)] (14) 

Where 𝑥 is the new set of hyperparameters, 𝑓(𝑥) is the 

performance of this set and 𝑥+ is the best performance 

achieved so far. Bayesian optimization uses these 

mathematical models to decide which hyperparameters to 

try and thus efficiently explore the search space. This 

method is particularly advantageous when the 

hyperparameter search space is large and the cost of 

evaluation is high. 

The CNN model is trained using the backpropagation 

algorithm. This algorithm includes forward propagation, 

error calculation and backpropagation stages. During 
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forward propagation, the outputs are calculated for the 

neurons in each layer of the network. This is done by 

applying the activation functions of the neurons in each 

layer starting from the input: 

𝑎𝑙 = 𝜎(𝑊𝑙𝑎𝑙−1 + 𝑏𝑙) (15) 

Here, 𝑎𝑙 represents the activation at layer 𝑙 and 𝑊𝑙 

represents the weight and bias. 𝜎 is the activation function. 

The error between the actual values in the training data set 

and the predicted values of the model is then calculated 

using an error function (loss function). 

During back propagation, the error term is back propagated 

from the output to the input of the network and how to 

update the weights and biases in each layer is calculated.  

Weight Update: 

𝑊𝑙 = 𝑊𝑙 − 𝑎
𝜕𝐸

𝜕𝑊𝑙 (16) 

𝑏𝑙 = 𝑏𝑙 − 𝑎
𝜕𝐸

𝜕𝑏𝑙 (17) 

Here, 𝑎 is the learning rate. 
𝜕𝐸

𝜕𝑊𝑙 and 𝑎
𝜕𝐸

𝜕𝑏𝑙 are the derivatives 

of the error function with respect to weight and bias. 

The error derivative is then calculated for each layer using 

the chain rule: 

𝑎
𝜕𝐸

𝜕𝑊𝑙 =
𝜕𝐸

𝜕𝑎𝑙 ∙
𝜕𝑎𝑙

𝜕𝑍𝑙 ∙
𝜕𝑍𝑙

𝜕𝑊𝑙 (18) 

Where 𝑍𝑙 = 𝑊𝑙𝑎𝑙−1 + 𝑏𝑙 is the input to the neurons in layer 

𝑙. 

The best hyperparameter settings obtained by the Bayesian 

Optimization hyperparameter algorithm in the proposed 

CNN model are shown in Table 1. 

Table 1. Best Hyperparameters Determined by BO Algorithm in CNN 

Model 

CNN  

(Bayesian 
Optimization) 

Number of Layers: 1 

Number of Filters (for Convolutional 
Layers): 32 

Kernel Size: 3 

Activation Function: ReLU 

Pooling Size (for MaxPooling): 2  

Dropout Rate: 0.2 

Learning Rate: 0.000601 

Batch Size: 64 

Number of Epochs: 300 

3.2. Long and Short Term Memory (LSTM) 

LSTM, a relatively new kind of neural network design, has 

a stellar reputation for its ability to classify sequential data. 

An integral feature distinguishing LSTM from traditional 

neural networks is a memory gate that facilitates the 

retention of critical information. Additionally, LSTM 

incorporates a forgetting gate, allowing it to discard 

irrelevant data (Alshaikhdeeb ve Cheah, 2023: 546). 

The LSTM mechanism's forget gate specifically functions 

to eliminate the cell state data from the preceding sequence. 

The time series' current input is denoted by xt, while its 

previous hidden state is symbolized by ht−1. Both of these 

values are processed by the activation function σg, resulting 

in the generation of the output vector ft, which is linked to 

the forget gate. This relationship can be expressed using 

Equation (19), wherein the bias coefficient is denoted as bf, 

the forget gates are represented as Wf and Uf, and the 

activation function is symbolized as σg. 

ft =  σg (Wfxt +  Ufht−1 +  bf) (19)  

The coefficients it  and C′t within this gate are calculated 

using the current data point in the time series input, denoted 

as xt , together with the hidden state from the previous time 

step, denoted as ht−1 . Via the activation function, these 

coefficients are calculated. σg and σc stand for the acronyms 

for the activation function, whereas Wi, Ui, Wc, and Uc stand 

for the weight coefficients.  

it = σg (Wixt +  Uiht−1 + bi) (20) 

C′t =  σc (Wcxt +  Ucht−1 +  bc) (21) 

The cell state, represented by the symbol Ct, is a component 

of Equation 22 update process.  After the forget gate's 

output, ft , is multiplied by the previous cell state, Ct−1, the 

cell candidate data,  C′t, is added to the input gate's 

output, it. The modified cell state, Ct , is described by this 

calculation. 

Ct =  ft x Ct−1 +  it x  C′t  (22) 

The creation of the output vector ot is shown in equation 

(23) and is accomplished by applying the activation 

function σg to the input vectors ht−1 and xt. Wo and Uo, the 

weight coefficients for the cell state, and the bias coefficient 

b0 are related to the input gate.  

ot =  σg (Woxt +  Uoht−1 +  bo) (23) 

ht =  ot x tanh (Ct) (24) 

Following generation, the current sequential cell state Ct is 

multiplied by the output value ot. Equation (24) shows how 

the activation function tanh generates the buried layer's 

output.  

However, in this study, particle swarm optimization (PSO) 

hyperparameter optimization, which is referenced in the 

work of Cansu et al. (2023), was used in the LSTM model, 

which is the deep learning model used for the prediction 

process. The PSO method was used to find the best 

combination of hyperparameters. In PSO, the position and 

velocity of each particle are updated with the following 

formulas: 

Speed Update: 

𝑣𝑖𝑑
𝑛𝑒𝑤 = 𝑤 ∙ 𝑣𝑖𝑑 + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∙ 𝑟2 ∙

(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑) (25) 

Where 𝑣𝑖𝑑  is the velocity of the particle, 𝑤 is the inertial 

weight, 𝑐1 and 𝑐2 are learning factors, 𝑟1 and 𝑟2 are random 

numbers, 𝑝𝑏𝑒𝑠𝑡𝑖𝑑  is the best position of the particle, 𝑔𝑏𝑒𝑠𝑡𝑑 

is the global best position, and 𝑥𝑖𝑑  is the current position. 

Position Update: 

𝑥𝑖𝑑
𝑛𝑒𝑤 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑

𝑛𝑒𝑤  (26) 

In the proposed LSTM model, the Adam optimizer is used 

during training, and this optimizer updates the weights 

automatically. The Adam (Adaptive Moment Estimation) 

optimization algorithm is based on gradient descent and 

updates the weights more efficiently by using momentum 
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and second moment (RMSprop) terms. Training algorithms 

commonly used in neural network training utilize gradient 

descent as the basis for weight updates. The Adam 

(Adaptive Moment Estimation) optimization algorithm 

builds on gradient descent and improves it by including 

momentum and second moment (similar to RMSprop) 

terms for more efficient weight updates. Here are the basic 

formulations of the Adam optimization algorithm: 

Gradient Descent: 

Gradient descent updates weights using the gradient. The 

gradient of the network's loss function is computed, and this 

gradient is used to update the weights. 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝑎 × ∇𝐿(𝜃𝑜𝑙𝑑) (27) 

Where 𝜃𝑛𝑒𝑤 is the new weight value, 𝜃𝑜𝑙𝑑 is the current 

weight value, 𝑎 is the learning rate, and ∇𝐿(𝜃𝑜𝑙𝑑) is the 

gradient of the loss function in the current weights. 

Momentum: 

Momentum speeds up weight updates by adding a 

momentum term that considers the previous updates of the 

gradient. 

𝑣𝑛𝑒𝑤 = 𝛽 × 𝑣𝑜𝑙𝑑 + (1 − 𝛽) × ∇𝐿(𝜃𝑜𝑙𝑑) (28) 

Where 𝑣𝑛𝑒𝑤  is the new momentum value, 𝑣𝑜𝑙𝑑  is the current 

momentum value, 𝛽 is the momentum term (a value 

between 0 and 1). 

RMSprop adaptively adjusts weight updates by taking the 

average of the squares of the gradients. This approach 

automatically adjusts the learning rate based on the 

magnitude of the gradient values. 

𝑆𝑛𝑒𝑤 = 𝛾 × 𝑆𝑜𝑙𝑑 + (1 − 𝛾) × ( 𝛻𝐿(𝜃_𝑜𝑙𝑑 ))2 (29) 

Here, 𝑆𝑛𝑒𝑤  is the new root mean square momentum value, 

𝑆𝑜𝑙𝑑  is the current root mean square momentum value, and 

𝛾 is the RMSprop term (a value between 0 and 1). However, 

Adam combines momentum and RMSprop terms for weight 

updates. 

Momentum Update: 

𝑚𝑛𝑒𝑤 = 𝛽1 × 𝑚𝑜𝑙𝑑 + (1 − 𝛽1) × 𝛻𝐿(𝜃𝑜𝑙𝑑)   (30) 

RMSprop Update: 

𝑆𝑛𝑒𝑤 = 𝛽2 × 𝑆𝑜𝑙𝑑 + (1 − 𝛽2) × (𝛻𝐿(𝜃𝑜𝑙𝑑))
2
 (31) 

Bias correction fort the first moment: 

�̂� =
𝑚𝑛𝑒𝑤

1−𝛽1
𝑡  (32) 

Bias correction fort the second moment: 

�̂� =
𝑆𝑛𝑒𝑤

1−𝛽2
𝑡 (33) 

Weight Update: 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝑎 ×
�̂�

√�̂�+𝜀
  (34) 

Where, 𝜃𝑛𝑒𝑤 New weight value, 𝑎 Learning rate, 𝑡 Update 

step, 𝛽1, 𝛽2 Momentum terms for the first and second 

moments respectively, 𝜀 a small value for numerical 

stability. Adam is an effective optimization algorithm for 

training large and complex neural networks, automatically 

adjusting the learning rate (Cansu et al., 2023). The best 

hyperparameter settings obtained by the PSO 

hyperparameter algorithm in the proposed LSTM model are 

shown in Table 2. 

Table 2. Best Hyperparameters Determined by PSO Algorithm in LSTM 

Model 

LSTM  

(Particle Swarm 
Optimization) 

Number of Layers:1 

Number of First Layer Neurons:100 

Activation Function: Hyperbolic 
Tangent 

Batch Size: 64 

Learning Rate: 0.0013 

Epoch Value: 500 

3.3. Gated Recurrent Unit (GRU) 

Originally created by Cho et al. (2014), the GRU is a variant 

of the Recurrent Neural Network (RNN). Long-range input 

is difficult for recurrent neural networks (RNNs) to capture 

and process correctly; this problem is solved by adding a 

gating component. GRU just contains the update gate (zt) 

and reset gate (rt), but LSTM has a more complex structure. 

The update gate (or input gate) of a Gated Recurrent Unit 

(GRU) is critical because it decides what fraction of the 

current input (xt) and previous output (ht−1) should be sent 

on to the next cell.  

In contrast, the reset gate determines how much weight 

should be given to previously acquired data. Based on the 

weight W, the information currently stored in memory may 

be used to send just the necessary details to the next 

iteration. By solving equations 35 and 36, the primary 

operations of the Gated Recurrent Unit (GRU) are defined. 

Update Gate: 

zt =  σ(Wz ∗ [ht−1, xt)] (35) 

Reset Gate: 

rt =  σ(Wr ∗ [ht−1, xt)] (36) 

GRU is particularly notable for its ability to retain 

information for a long time, especially in long sequence 

data, and to learn temporal connections. These features 

make GRU a popular choice for language modeling, text 

generation, time series analysis, and more (Ayzel and 

Heistermann, 2021). In addition, grid search is a method for 

tuning model hyperparameters in machine learning. This 

method aims to find the parameter combinations that will 

make the model perform best by systematically trying all 

possible combinations within a given set of 

hyperparameters. Especially in complex models, choosing 

the right hyperparameters can greatly affect the 

performance of the model (Buslim et al., 2021). In this 

study, this method was preferred to provide the best 

hyperparameter settings for the GRU model. On the other 

hand, Adam Optimizer was used as the training algorithm 

in this model as in the LSTM model, and the LSTM process 

was applied in this model as well. 

In this model created with Grid Research hyperparameter 

optimization, there are 𝑛 different hyperparameters to be 

optimized: 

𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} (37) 
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For each hyperparameter ℎ𝑖, let 𝐷𝑖  be the range of values or 

set of candidate values. For all ℎ𝑖, all possible combinations 

over 𝐷𝑖  are generated. The combinations are expressed by 

the product set “𝐷1 × 𝐷2 × … × 𝐷𝑛”.  

If 𝐷1 = {𝑑11, 𝑑12} and 𝐷2 = {𝑑21, 𝑑22}, the combinations to 

be formed are 
{(𝑑11, 𝑑21), (𝑑11, 𝑑22), (𝑑12, 𝑑21), (𝑑12, 𝑑22)}. Then, for 

each combination 𝐶, the model is trained with 

hyperparameters 𝐶 and its performance is evaluated by 

𝑃(𝐶). The best of the performance values obtained for all 

combinations is selected: 

Max performance: 

𝐶∗ = arg 𝑚𝑎𝑥𝐶𝑃(𝐶) (38) 

Or minumum performance:  

𝐶∗ = arg 𝑚𝑖𝑛𝐶𝑃(𝐶) (39) 

Finally train the model with the best found hyperparameter 

combination 𝐶∗. The basic logic of Grid Search is to find 

the best performing combination by trying all possible 

combinations of the specified hyperparameters. This 

process can be computationally intensive as it usually 

involves a large number of combinations. The formulas 

provide a mathematical representation of this process. The 

best hyperparameter settings obtained by the Grid Search 

hyperparameter algorithm in the proposed GRU model are 

shown in Table 3. 

Table 3. Best Hyperparameters Determined by Grid Search Algorithm in 

GRU Model 

GRU (Grid Search Optimization) 

Number of Layers:1 

Number of First Layer Neurons:80 

Activation Function: Sigmoid 

Batch Size: 64 

Learning Rate: 0.0088 

Epoch Value: 500 

3.4. Hybrid CNN-LSTM-GRU Model 

The research approach was followed in the initialization and 

pre-processing of the data to produce sliding window data 

consisting of training, assessment, and testing datasets. 

Furthermore, the architecture and hyperparameters used in 

this study are applied to the prediction process of this 

dataset. The architecture of the CNN-LSTM-GRU model 

and the hyperparameter settings used in this study are based 

on the work of Sulistio et al. (2023). The CNN-LSTM-GRU 

model used in this study is composed of two convolutional 

layers, two pooling layers, one LSTM layer, one GRU layer, 

one smoothing layer, three dense layers, and two dropout 

layers. The GRU layer has 192 neurons, whereas the LSTM 

layer consists of 128 neurons. One of the improved 

hyperparameters in this study is the number of layers. In the 

layer, the relay function serves as the activation function. 

Because there is just one possible output value—the 

estimated value of kilos of silver—the thick layer consists 

of a single neuron. The layer has a linear activation function. 

This function is put to use due of the reliability with which 

it makes predictions.  

To create a mathematical representation of this architecture, 

we need to detail the operations and transformations at each 

layer, as they process the input data. Here is a breakdown: 

Input Data: Let’s assume the input data is a sequence of 

vectors, each of size 𝐷. 

Table 4. Settings for the Hybrid CNN-LSTM-GRU Model 

Hyperparameters 

Layer (type) Output Shape 

Conv1D (None, 15, 64) 

MaxPooling1D (None, 14, 64) 

Conv1D (None, 14, 32) 

MaxPooling 1D (None, 13, 32) 

LSTM (None, 13, 128) 

GRU (None, 13, 192) 

Flatten (None, 2496) 

Dense (None, 128) 

Dropout (None, 128) 

dense_1 (Dense) (None, 32) 

dropout_1 (Dropout) (None, 32) 

dense_2 (Dense) (None, 1) 

However, the architecture of the CNN-LSTM-GRU hybrid 

model used is shown in Figure 1. 

Conv1D Layers: These layers apply convolution operations. 

The first Conv1D layer transforms the input data to a shape 

of (15, 64), and the second Conv1D layer further processes 

it to a shape of (14, 32). The mathematical operation for a 

convolutional layer can be represented as: 

Conv1D(𝑥) = ReLU(W ∙ 𝑥 + 𝑏) (40) 

where 𝑊 and 𝑏 are the weights and biases of the 

convolutional filters, ∗ denotes the convolution operation, 

and ReLU is the activation function. 

MaxPooling1D Layers: These reduce the dimensionality of 

the data after each Conv1D layer. The operation is: 

MaxPooling1D(𝑥) = max (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑥) (41) 

The LSTM layer processes the sequence data and has 128 

neurons. Its mathematical operation involves a complex 

interaction of gates (input, output, and forget) and can be 

represented as: 

LSTM = (𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1) = ℎ𝑡 , 𝑐𝑡 (42) 

where 𝑥𝑡 is the input at time 𝑡, ℎ𝑡−1 and 𝑐𝑡−1 are the 

previous hidden state and cell state, respectively, and ℎ𝑡 and 

𝑐𝑡 are the current hidden state and cell state. 

The GRU Layer is similar to the LSTM but slightly simpler 

with 192 neurons. Its operation is as follows: 

𝐺𝑅𝑈 = (𝑥𝑡 , ℎ𝑡−1) = ℎ𝑡 (43) 

Flatten layer, converts the output from the GRU layer into a 

flat vector. However, Dense layers are fully connected 

layers. The first has 128 neurons, the second 32, and the 

third just 1 neuron, representing the estimated value of kilos 

of silver. The mathematical representation is: 

𝐷𝑒𝑛𝑠𝑒(𝑥) = 𝜎(𝑊𝑥 + 𝑏) (44) 

where 𝑊 and 𝑏 are the layer’s weights and biases, 

respectively, and 𝜎 is either a ReLU or a linear activation 

function. On the other hand, Dropout layers randomly set a 

fraction of the input units to 0 at each update during training, 

which helps prevent overfitting. The dropout operation is 
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not directly mathematical but is an operation applied during 

training. The last layer Output produces a single value, the 

estimated value of silver. The CNN-LSTM-GRU was run 

on a training dataset after the hyperparameter adjustments 

given in Table 4 were made. In addition, the model 

developed via this algorithmic method was utilized to make 

predictions on the test dataset. 

 

Figure 1. The Architecture of Rhe CNN-LSTM-GRU Hybrid Model 

4. Results and Discussion 

In this study, LSTM, CNN, GRU, and a new hybrid model, 

CNN-LSTM-GRU, were used to predict the XAGg/TRY-

Gram silver price. Data from the website investing.com was 

gathered for the research. The data set has a time interval of 

1645 days, starting on August 1, 2017 and ending on 

September 29, 2023. The silver price data specifications 

used in the study are the closing price and the opening price. 

A total of five different error statistics were used in the 

study. These error coefficients are RMSE, MAE, MAPE, 

and R2. Each model was developed, trained, and then 

evaluated using a specific data set. The training 

performances of the models are presented in Table 5. 

 

Table 5. Training Results of CNN, LSTM, GRU and Hybrid CNN-LSTM-

GRU Models 

Model RMSE MAE MAPE 𝐑𝟐 MASE SMAPE 

CNN 1.4780 8.3435% 0.0200 0.8983 1.6550 2.1172 

LSTM 0.9120 5.6782% 0.0220 0.9014 1.1743 1.9510 

GRU 2.077 11.3543% 0.0351 0.8651 2.2781 2.9783 

CNN-

LSTM-

GRU 

0.1356 1.5011% 0.0189 0.9890 0.9790 0.9520 

According to these training results, the hybrid CNN-LSTM-

GRU model performed significantly better than the other 

models. With the lowest RMSE (root mean square error), 

MAE (mean absolute error), and MAPE (mean absolute 

percentage error) values, this model predicts the data most 

accurately. Moreover, this model with the highest R2 (R-

squared) value shows that the variance of the data is best 

explained. On the other hand, the CNN and LSTM models 

performed moderately, while the GRU model showed the 

lowest performance on these measures. MASE (mean 

absolute scaled error) and SMAPE (symmetric mean 

absolute percentage error) values also show that the hybrid 

model outperforms the other models. These results suggest 

that the hybrid model is more effective in modeling complex 

data sets. However, Table 6 shows the error coefficients 

calculated from the test results of the models. 

Table 6. Test Results of CNN, LSTM, GRU, and Hybrid CNN-LSTM-

GRU Models 

Model RMSE MAE MAPE 𝐑𝟐 MASE SMAPE 

CNN 1.3255 6.1482% 0.0191 0.9092 1.7124 2.0564 

LSTM 0.9673 4.3551% 0.0174 0.9132 1.1678 1.8434 

GRU 2.1776 10.2953% 0.0292 0.8713 2.1743 2.8692 

CNN-

LSTM-

GRU 

0.1089 1.4789% 0.0170 0.9913 0.9846 0.9678 

When compared to the other three prediction techniques 

(CNN, LSTM, and GRU), the CNN-LSTM-GRU strategy 

was shown to have the greatest predicted value matching 

rate and to be closest to the true value. The better the 

forecast, the lower the MAE number should be. The more 

precise a prediction is, the lower the RMSE number should 

be. Values of R-squared (R2) might be anything from zero 

to one. Higher accuracy in predictions is shown by reduced 

margins of error (MAE) and RMSE (the difference between 

the expected and actual values). When R2 is near to 1, it 

indicates that the values are very close to each other 

(Sulistio et al., 2023: 180-181). 

On the other hand, Figure 2 displays the empirical test 

results for each of the models.  The dashed blue line displays 

the actual closing price of silver for each of the forecasting 

models, while the red line indicates the projected value for 

each model. 
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Figure 2(a). Test Outcomes of the LSTM Model 

 

Figure 2(b). Test Outcomes of the CNN Model 

 

Figure 2(c). Test Outcomes of the GRU Model  

 

Figure 2(d). Test Outcomes of the Hybrid CNN-LSTM-GRU Model  

In order to estimate the closing price of silver, four 

algorithms were used in the experiment, and the results were 

compared to determine the real value that is shown in Table 

2 and Figure 1. Compared to CNN or GRU algorithms, the 

LSTM method that yields the lowest MAE value (4.3551%) 

and the best RMSE value (0.9673%) is the one that is used 

exclusively. An R2 score of 0.91, or almost 1, is obtained 

for LSTM. When compared to the application of the CNN 

and GRU algorithms, this value is likewise the best. LSTM 

performs rather well on its own, but it can perform much 

better when combined with other algorithms to create a 

hybrid algorithm. 
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The CNN-LSTM-GRU hybrid technique yields the lowest 

and most accurate results, with mean absolute error (MAE) 

and root mean squared error (RMSE) values of 1.4789 and 

0.1089, respectively, and an R2 value of 0.9991, which is 

extremely close to 1. When comparing the CNN-LSTM-

GRU hybrid algorithm to the LSTM method, we find that 

the MAE, RMSE, and MAPE values decrease while the R2 

value increases. These numbers demonstrate that using this 

hybrid approach is more beneficial than using other 

techniques. 

In this study, MASE and SMAPE error calculations were 

also performed. MASE scales the forecast errors relative to 

the errors of a simple time series model. A MASE less than 

1 indicates that the model outperforms a simple, naive 

forecasting model. This metric is often used in time series 

forecasting and is useful for comparing model performance 

with naive approaches. On the other hand, SMAPE 

expresses as a percentage how close the forecasts are to the 

true values. Values close to 0 indicate better forecasts. This 

metric is especially used in time series forecasting and 

financial analysis (Sbrana and Silvestrini, 2022). The 

MASE value of the CNN model is 1.7124. This indicates 

that the model performs slightly better than a simple, naive 

forecast, but there is still room for improvement. In the 

LSTM model, this value is 1.1678. The LSTM model 

outperforms the CNN model and has significantly better 

results than a naive forecast. In the GRU model, the MASE 

value is 2.1743. This indicates that the GRU model 

performs worse than a naive forecast, especially compared 

to the other models. On the other hand, in the CNN-LSTM-

GRU model, the MASE value is 0.9846. This shows that the 

hybrid model performs almost the same as a naive forecast 

and performs the best relative to the other three models. 

However, the SMAPE value for the CNN model is 

2.0564%, indicating that the closeness of the model's 

predictions to the actual values is moderate. In the LSTM 

model, the SMAPE value is 1.8434%. The LSTM model 

shows better closeness than CNN. In the GRU model, the 

SMAPE value is 2.8692%. This shows that the GRU model 

makes the farthest predictions from the true values. Finally, 

the SMAPE value of the CNN-LSTM-GRU model is 

0.9678%. This indicates that the predictions of the hybrid 

model are closest to the true values and perform the best at 

this scale. In general, the CNN-LSTM-GRU hybrid model 

outperformed the other three models in terms of both MASE 

and SMAPE. On the other hand, while the LSTM model 

also gives good results, the performance of the GRU model 

is found to be the lowest in these metrics. 

The CNN-LSTM-GRU hybrid algorithm outperforms 

conventional forecasting methods that depend only on the 

CNN or LSTM algorithm when it comes to predicting the 

closing price. For forecasting purposes, the CNN-LSTM-

GRU hybrid algorithm achieves lower MAE, RMSE, and 

MAPE values than LSTM alone. A hybrid algorithm yields 

more accuracy in silver value estimate than a single 

algorithm, according to test findings. It has also been shown 

that using the hybrid CNN-LSTM-GRU  algorithm 

enhances closing silver price predicting outcomes and 

lowers error values when compared to other methods. 

However, when the training and test results are compared, 

it is seen that the hybrid CNN-LSTM-GRU model has a 

clear advantage over the other models in both training and 

testing. The lowest RMSE, MAE, and MAPE values in both 

training and testing indicate that the model predicts the data 

accurately. The high R2 value indicates that the model 

explains a large portion of the variance in the data set. 

Among the other models (CNN, LSTM, and GRU), the 

LSTM model performs better in both cases. The GRU 

model, on the other hand, performs the worst in both 

training and testing. These results show that the hybrid 

model is neither overfitting nor underfitting, so the model is 

overall efficient and balanced. In addition, comparing the 

training and testing results for the other models, the LSTM 

model performs well in both training and testing. The 

RMSE, MAE, and MAPE values are relatively low, and the 

R^2 value is high. The CNN model also performs 

reasonably well, while the GRU model has the highest error 

rates and the lowest R^2 values in both cases. This suggests 

that the GRU model is the least suitable for this dataset. 

Considering the performances of LSTM and CNN, it shows 

that although both of them perform lower than the hybrid 

model, they are compatible with the dataset and do not 

suffer from overfitting or underfitting problems. 

As mentioned in the previous literature review, Sulistio et 

al. (2023) used six different deep learning algorithms for 

financial data prediction. When the results were analyzed, 

the CNN-LSTM-GRU hybrid algorithm performed better 

than the other methods. In addition, MSE decreased by 

14%, MAE decreased by 13%, and R2 increased by 3.9%. 

When these results are compared with the results of this 

study, the superior performance of the CNN-LSTM-GRU 

hybrid model is observed in both studies. On the other hand, 

in both studies, model performances were evaluated using 

metrics such as RMSE, MAE, and R2. These metrics 

showed improvement in both studies. The parallelism of the 

results of the two studies strongly supports the potential of 

deep learning algorithms in this field. 

However, comparing this study with the study by Goel et al. 

(2022) will provide different perspectives on the 

effectiveness of machine learning models in financial 

forecasting. Both studies used machine learning models to 

predict the prices of precious metals in particular, but the 

studies differ in terms of different models, data sets, and 

measurement metrics. Both studies focused on precious 

metals price forecasting, but for different markets (Indian 

market vs. Turkish market) and metals (gold and silver). In 

Goel et al.'s study, the RNN model showed high accuracy 

only for gold, while in this study, specific RNN structures 

were found to perform better for silver prediction. 

Some enhancements and suggestions may be taken into 

consideration for next research on silver price forecasting, 

based on the findings of this study. First off, expanding 

access to a wider range of data sources might increase 

prediction accuracy. Furthermore, the prediction 

performance may be enhanced by the use of stronger deep 

learning algorithms. Investing may benefit from analyzing 

long-term silver price expectations. A more thorough 

investigation of the variables influencing silver pricing need 

to be conducted using factor analysis. In conclusion, it is 

worthwhile to contemplate the use of these projections in 

enhancing risk mitigation tactics. The study's relevance lies 

in the fact that industrial and investment users depend on 

precise silver price forecasts, and future research should 

focus on expanding knowledge and expertise in this field. 
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