Araştırma Makalesi
BibTex RIS Kaynak Göster

Al2O3-Su Nanoakışkanı İle Isı Transferinin İyileştirilmesi

Yıl 2017, Cilt: 7 Sayı: 2/2, 253 - 260, 28.12.2017

Öz

Son
yıllarda malzeme bilimindeki gelişmeler sonucunda ısı transferinin
iyileştirilmesinde yüz yıllardır uygulanan akışkan içerisine milimetre veya
mikrometre boyutlarındaki katı partiküllerin süspanse edilmesi yöntemi yeni bir
boyut kazanmıştır. 100 nm’ nin altında parçacıklar elde edilerek bu
parçacıklar, geleneksel olarak endüstriyel sistemlerde ısı transfer akışkanı
olarak kullanılan su, sentetik yağ (motor yağı), etilen glikol gibi temel
akışkanlarla belirli oranlarda karıştırılarak yeni akışkanlar elde edilmeye
başlanmıştır.  Bu çalışmada % 0.2, % 0.4
ve % 0.8 hacimsel oranlarında Al2O3 nanopartikülleri saf
suyun içerisine katılarak nanoakışkanlar hazırlanmış ve hazırlanan
nanoakışkanların termofiziksel özellikleri (ısıl iletkenlik, viskozite gibi)
belirlenmiştir. Sonuçlar literatürdeki mevcut modellerle karşılaştırılmıştır.

Kaynakça

  • Chang, H., Tsung, T. T., Chen, L. C., Yang, Y. C., Lin, H. M., Lin, C. K., Jwo, C. S., 2005. Nanoparticle Suspension Preparation Using the Arc Spray Nanoparticle Synthesis System Combined with Ultrasonic Vibration and Rotating Electrode, The International Journal of Advanced Manufacturing Technology, 26, 552–558.
  • Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 99–105.
  • Choi, S.U.S., Zhang, Z. G, Yu, W., Lockwood, F. E., Grulke, E.A., 2001. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Applied Physics Letters, 79 (14), 2252- 2254.
  • Choi, S.U.S., Zhang, Z.G., Yu F.E. 2001. Lockwood and E.A. Grulke, Anomalously Thermal Conductivity Enhancement Nanotube suspensions, Applied Physics Letters, 79, 2252-2254.
  • Dilek, E. F., 2008. Nanoakışkanların Hazırlanması ve Isıl İletkenliklerinin Belirlenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu,W., Thompson, L. J., 2001. Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters, 78, 718–720.
  • Gürmen, S. Ebin, B., 2008. Nanopartiküller ve Üretim Yöntemleri-1, Metalurji Dergisi, 150, 31-38.
  • Xu J.F., Zhang J.R., Du Y.W., 1996, Ultrasonic velocity and attenuation in nano- structured Zn materials, Mater Lett; 29, 131–4.
  • Liu , M., Lin , M., Huang , I., Wang, C., 2005. Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 32, 1202–1210.
  • Lo, C.-H., Tsung, T.-T., Chen, L.-C., Su, C.-H., Lin, H.-M., 2005. Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS), Journal of Nanoparticle Research, 7, 313–320.
  • Lo, C.-H., Tsung, T.-T., and Chen, L.-C., 2005. Shaped-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS), Journal of Crystal Growth, 277, 636–642.
  • Mishra P. C., Mukherjee S., Nayak S. K., Panda A., 2014. A brief review on viscosity of nanofluids, Int Nano Lett, 4, 109–120.
  • Verma P., Chaturvedi P., Rawat J.S.B.S., 2007. Elimination of currentnon-uniformity in carbon nanotube field emitters, J Mater Sci: Mater Electron, 18, 677–80.
  • Wen, D., Ding, Y., 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47, 5181–5188.
  • Zhu, H., Lin, Y., Yin, Y., 2004. A novel one-step chemical method for preparation of copper nanofluids, Journal of Colloid and Interface Science, 277, 100–103.
Yıl 2017, Cilt: 7 Sayı: 2/2, 253 - 260, 28.12.2017

Öz

Kaynakça

  • Chang, H., Tsung, T. T., Chen, L. C., Yang, Y. C., Lin, H. M., Lin, C. K., Jwo, C. S., 2005. Nanoparticle Suspension Preparation Using the Arc Spray Nanoparticle Synthesis System Combined with Ultrasonic Vibration and Rotating Electrode, The International Journal of Advanced Manufacturing Technology, 26, 552–558.
  • Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 99–105.
  • Choi, S.U.S., Zhang, Z. G, Yu, W., Lockwood, F. E., Grulke, E.A., 2001. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Applied Physics Letters, 79 (14), 2252- 2254.
  • Choi, S.U.S., Zhang, Z.G., Yu F.E. 2001. Lockwood and E.A. Grulke, Anomalously Thermal Conductivity Enhancement Nanotube suspensions, Applied Physics Letters, 79, 2252-2254.
  • Dilek, E. F., 2008. Nanoakışkanların Hazırlanması ve Isıl İletkenliklerinin Belirlenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu,W., Thompson, L. J., 2001. Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters, 78, 718–720.
  • Gürmen, S. Ebin, B., 2008. Nanopartiküller ve Üretim Yöntemleri-1, Metalurji Dergisi, 150, 31-38.
  • Xu J.F., Zhang J.R., Du Y.W., 1996, Ultrasonic velocity and attenuation in nano- structured Zn materials, Mater Lett; 29, 131–4.
  • Liu , M., Lin , M., Huang , I., Wang, C., 2005. Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 32, 1202–1210.
  • Lo, C.-H., Tsung, T.-T., Chen, L.-C., Su, C.-H., Lin, H.-M., 2005. Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS), Journal of Nanoparticle Research, 7, 313–320.
  • Lo, C.-H., Tsung, T.-T., and Chen, L.-C., 2005. Shaped-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS), Journal of Crystal Growth, 277, 636–642.
  • Mishra P. C., Mukherjee S., Nayak S. K., Panda A., 2014. A brief review on viscosity of nanofluids, Int Nano Lett, 4, 109–120.
  • Verma P., Chaturvedi P., Rawat J.S.B.S., 2007. Elimination of currentnon-uniformity in carbon nanotube field emitters, J Mater Sci: Mater Electron, 18, 677–80.
  • Wen, D., Ding, Y., 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47, 5181–5188.
  • Zhu, H., Lin, Y., Yin, Y., 2004. A novel one-step chemical method for preparation of copper nanofluids, Journal of Colloid and Interface Science, 277, 100–103.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Neşe Budak Ziyadanoğulları

Yayımlanma Tarihi 28 Aralık 2017
Gönderilme Tarihi 19 Haziran 2017
Kabul Tarihi 27 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2/2

Kaynak Göster

APA Budak Ziyadanoğulları, N. (2017). Al2O3-Su Nanoakışkanı İle Isı Transferinin İyileştirilmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 7(2/2), 253-260.